
Fuzzy Extensions for Reverse Engineering Repository Models

Ulrike Kölsch
T-Systems International GmbH

Fasanenweg 5
70771 Leinfelden-Echterdingen, Germany

Email: koelsch@acm.org

René Witte
Concordia University,

Department of Computer Science
Montréal, Québec, Canada
Email: me@rene-witte.net

Abstract

Reverse Engineering is a process fraught with imperfec-
tions. The importance of dealing with non-precise, possi-
bly inconsistent data explicitly when interacting with the re-
verse engineer has been pointed out before.

In this paper, we go one step further: we argue that the
complete reverse engineering process must be augmented
with a formal representation model capable of modeling
imperfections. This includes automatic as well as human-
centered tools.

We show how this can be achieved by merging a fuzzy
set-theory based knowledge representation model with a re-
verse engineering repository. Our approach is not only ca-
pable of modeling a wide range of different kinds of im-
perfections (uncertain as well as vague information), but
also admits robust processing models by defining explicit
degrees of certainty and their modification through fuzzy be-
lief revision operators.

The repository-centered approch is proposed as the foun-
dation for a new generation of reverse engineering tools.
We show how various RE tasks can benefit from our ap-
proach and state first design ideas for fuzzy reverse engi-
neering tools.

1. Introduction

Reverse engineering (RE) is a process permeated by im-
precisions. It has already been suggested [10] that imperfect
knowledge must be modeled explicitly, in order to exploit it
for automatic and human-centered RE tasks.

Reverse engineering, especially of large, industrial-sized
legacy systems, can be described as a cyclic and iterative dis-
covery process as well as a cooperative task, performed by
a group of reverse engineers with the goal to gain a more ab-
stract and semantically richer description of the system ex-
amined [18]. The process evolves as a sequence of bottom-
up and top-down process steps using multiple sources, meth-
ods, heuristics, and tools. Their choice depends on the cur-
rent situation and the intention of the performing reengineer.

The goal is to acquire as much knowledge about the exam-
ined system as possible from the information available at a
certain point in time. The sequence of steps performed is
neither predefined nor precisely formalizable, but is deter-
mined by the individual situation of each RE project.

This behaviour leads to a vast and diverse set of hetero-
geneous results. Usually, these results are neither stored in
a homogenous way nor are they categorized according to
origin, quality, and reliability. Additionally, due to the very
nature of reverse engineering, most of the information ob-
tained is permeated by imperfections, which typically can-
not be represented explicitly. As a consequence, the knowl-
edge stored does not result in an accurate representation of
the actual system, leading to a loss of important informa-
tion that could improve further analyses.

To overcome this situation we proposed the adoption of
the repository concept [16, 17]. Already, it has proven to be
useful in forward software engineering. Successful CASE
tools like Together, Rational Rose, or ArcStyler contain a
repository based on a domain model, which allows to de-
fine and represent a system’s design and implementation
artefacts in an appropriate way.

We recommend the use of a model-based repository
to consolidate and aggregate all results, information, and
knowledge gathered while reverse engineering a legacy sys-
tem. Integration of diverse knowledge is needed in order to
achieve an abstract target representation of the legacy sys-
tem. Here, the repository’s conceptual model determines its
representation and level of abstraction.

Since imperfection is an intrinsic characteristic of re-
verse engineering [10], the repositories used within
reenginering frameworks must be enhanced in order to ade-
quatly capture and process imperfect information.

The remainder of this paper is structured as follows: in
the next section we analyse the requirements for such a
repository model. Additionally, we illustrate these require-
ments with a number of deficiencies we detected through
our TAO repository model [17]. We propose a fuzzy set-
theory based representation and processing model that satis-

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

fies these requirements. The integration of this fuzzy model
with our repository and its deployment in a fuzzy RE frame-
work is presented in section 4. Finally, we discuss related
work, followed by conclusions and ideas for future research.

2. Analysis — Imperfect information in RE

The importance of incorporating imperfect information
into the reverse engineering process has been pointed out
before [10]. We agree with Jahnke and Walenstein insofar
as the impedance mismatch between the quality and char-
acteristics of reverse engineering knowledge and its repre-
sentation within repositories and tools leads to major prob-
lems.

In contrast to Jahnke and Walenstein, we are of the opin-
ion that imperfection should be regarded as an intrinsic part
of the reverse engineering domain, and not as a feature
of specific items, methods, or tools. Consequently, these
characteristics should be incorporated into the modeling ap-
proach used for defining the domain model, in such a way
that all reengineers, tools, and methods can make use of an
adequate representation of imperfect knowledge.

In this section, we analyse the requirements concerning
imperfect information within the reverse engineering do-
main. We extract three major requirements accompanied
by a major constraint. These requirements manifest the fea-
tures that must be fulfilled by a model in order to support
the proper handling of imperfect knowledge.

2.1. Illustration of the requirements using the
TAO framework

By definition, reverse engineering is described as “a pro-
cess of analyzing a subject system to (i) identify the sys-
tem’s components and their interrelationships and (ii) cre-
ate representations of the system in another form or a higher
level of abstraction” [7].

But the process of knowledge extraction as well as the
methods and tools used are ambiguous and error-prone.
In order to support reverse modeling, a repository is em-
ployed to accumulate data and support further processing.
The repository domain models represent the systems under
examination on different levels of abstraction. At least three
levels — implementation, design, and requirements — are
widely accepted.

Equally known is the impedance mismatch, which de-
scribes the problem that the assignment of semantically rich
design concepts to more constrained implementation solu-
tions (and vice versa) can not always be decided unam-
biguously. Therefore, assignment decisions cannot be deter-
mined automatically but rather need human intervention [8].

When we regard the assignment problem from a reverse
engineering perspective the problem becomes even more
severe. The RE process produces a lot of isolated results
by different methods, tools, analyses, inspections, etc. Such

an abundance of disjoint information leads to the problem
of collecting them in a homogenous and contradiction-free
way into a single repository that represents the legacy sys-
tem’s reverse model. The information obtained during RE
must be derived from the implementation level, which is
usually not precise enough to determine the original design
concepts that have been implemented by the extracted im-
plementation artefacts.

Thus, the target model must be built gradually and iter-
atively based on the evidence found, developing more ab-
stract concepts in a step-by-step fashion, which allows for
the pursuit of different possible reverse design concepts in
parallel.

Reverse engineering example: In order to illustrate the
dilemma that arises from the deterministic modeling ap-
proach of RE domain models consider the following sim-
ple example of an RE process: A legacy system is exam-
ined regarding a specific variable i. For the scope of this
example we are especially interested in the variable’s type,
which in turn is needed to derive its usage within the legacy
system. Code fragments as well as data and available docu-
mentation are scanned. Several results are found by differ-
ent methods and tools:

Data Flow Analysis: The result of a data flow analysis is
that variable i is defined as char.

Control Flow Analysis: The result of a control flow analy-
sis shows that variable i is used in certain control flow state-
ments (if, case). This indicates that it might serve as a con-
trol flow variable — but since it is also used in I/O opera-
tions, we cannot be certain of that result. We therefore store
this information, annotated with an assessment of its rele-
vance, in a free-form textfield.

Domain Expert: A domain expert discovered a document
stating that variable i represents the seven days of the week.
However, since the documentation is somewhat outdated,
the domain expert stores the information as an uncertain re-
sult and adds her assessment as being “quite certain” in a
free-form textfield.

Developer: A developer opines that variable i is of type in-
teger, effectively storing a one-byte integer representation
of the seven days of the week including a default value zero
for the case “no day assigned.” But an integer type defini-
tion cannot be derived from the source code, only control
statements imply that the value of i lies between 0 and 7.
So, his information is valuable but again “not certain.”

Data Mining: The data mining tool extracts all instances
of the variable i stored in a database. It reports a result in-
dicating a domain range between −1 and 31, but showing
a significant density for the values 0–8. Hence, the reengi-
neer takes this to be a strong indication for a data range be-
tween 0 and 8. The other values could be the result of old

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

0..n

0..1

is_described_by

is_described_by

Concepts

ShadowObject

features [1..n]

concept(y):result
concept(y,value)

concept(y):precise_result

feature(x):precise_result
feature(x,precise_value)

concept(y,precise_value)

features [1..n]

ratings [1..n]

feature(x):(imperfect_result,rating)
feature(x,imperfect_info,rating)
concept(y):(imperfect_result,rating)
concept(y,imperfect_info,rating)

features [1..n]

Troll_Artefact FrameObject

feature(x):result
feature(x,value)

Figure 1. The generic TAO model

or dirty data, which are negligible. This result is stored de-
noting variance and deviation of the data mining result in a
free-form textfield.

Generally, domain models of RE repositories are based
on proven modeling concepts, such as UML, OMT, or ER
as meta modeling languages. The domain models have been
designed in order to describe legacy systems in terms of
their target model. E.g., the domain models of COREM, Var-
let, or TAO are object-oriented and describe a legacy sys-
tem in terms of classes, associations, attributes, and other
OO concepts.

However, by using a repository based on crisp concep-
tual modeling languages we are severely restricted by the
fact that we cannot store all results gained concerning an
artefact, like the attribute i. This limitation of repository
models is due to the underlying conceptualization, which
is not able to deal with imperfections like vagueness, multi-
ple options, or uncertainty.

So far, repositories offer two alternatives for the storage
of artefact-result pairs:

1. Every artefact-result instance is stored separately. No
interdependency between the different result items can
be supported by this approach. Particularly the confir-
mation of knowledge through similar and supportive
results is not possible.

2. Only the most certain result concerning one artefact is
stored in the repository. All other information has to be
neglected as less valuable and ignored, even though it
might be useful or become more certain during the on-
going process.

In our approach, the TAO framework [16,17], we already
tried to overcome this constraint by extending the domain
model, including the notion of what we called hypothetical

Attribute i

initialized
restricted
usage
type

FrameObject

type = char

feature(type):string
feature(type,string)

ShadowObject

type = enum_of_7_days
rating = quite certain

feature(type):(string,string)
feature(type,string,string)

ShadowObject

rating = also used as I/O
usage = index

feature(usage):(string,string)
feature(usage,string,string)

ShadowObject

type = [−1,...,31] −>[0,...,8]
rating = strong indication

feature(type):(string,string)
feature(type,string,string)

ShadowObject

usage = index [0..7]
rating = not certain

feature(usage):(string,string)
feature(usage,string,string)

Figure 2. Instance model of an ATTRIBUTE i

(not finally validated) knowledge. We therefore decided to
split the repository model into two parts: one part represent-
ing the precise and final knowledge (the FRAME classes),
and the other part representing the hypothetic knowledge
(the SHADOW classes). All artefacts in the TAO model are
defined as an aggregation of 0. . .1 FRAME and 0. . .n sib-
ling SHADOW objects as shown in Figure 1. The model of
the TAO framework is based on the formal object-oriented
specification language TROLL, providing us with all con-
cepts needed to describe a system in an object-oriented way
[6]. Figure 2 shows how the RE results of an artefact AT-
TRIBUTE i can be encoded as a TAO repository instance.
Although the TAO model can store imperfect information
that arises during the RE process, we detected several short-
comings with this approach:

Insufficient expressiveness of the representation formalism.
The degree of certainty or correctness of a result cannot be
represented through a formally defined concept. Since it is
just a textfield, all kinds of representations can be found,
single adjectives as well as short phrases and statistical mea-
sures. These results form an uncomparable heap of data that
cannot be automatically processed for further analyses.

No management and interpretation of joined imperfect
data instances. The TAO framework lacks functional-
ity to evolve the knowledge base according to information
gathered during RE. The number of uncertain but valid re-
sults collected about attribute i illustrates this issue. After
obtaining more and more evidence the uncertain be-
lief that attribute i is of type integer, representing the seven
days of the week plus zero as default, should be more cer-
tain than every single result alone. And this fact should
be reflected as nearly certain knowledge about the arte-
fact i within the repository.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

Different representation of certain and imperfect informa-
tion. Having different representations for imperfect and
crisp knowledge leads to problems when evolving knowl-
edge. Knowledge discovery often starts with a guess.
Throughout the discovery process supporting or oppos-
ing facts are found, leading towards a valid assumption.
The knowledge itself, as well as its change, must be repre-
sentable within a repository model. But strict models like
TAO refer to imperfect and precise knowledge in a differ-
ent way. Therefore the change of a knowledge instance
from uncertain to certain during its lifetime cannot be mod-
eled. Knowledge discovery in RE processes lacks ade-
quate support for imperfect information, as already stated
by Jahnke and Walenstein [10].

2.2. Detected requirements for handling imperfect
information in RE repository models

All issues detected in the last subsection share one key
feature: strict modeling concepts lack the ability to ade-
quately support the reverse engineering domain. Issues that
force a change in repository models are essential to re-
verse engineering: results are fraught with imperfections,
since the derivation of an abstract concept from implemen-
tation sources is usually not precisely determined. Results
can be supported or invalidated during the ongoing RE pro-
cess by additional, possibly conflicting results. Numerous
sources of different quality and certainty supply information
about a specific artefact. Their integration and consistency-
preservation must be performed automatically, especially
with regard to the amount of data produced by reverse en-
gineering an industrial-strength legacy system.

At present, repository models are neither able to support
the explicit representation of imperfection nor do they en-
able the processing of such knowledge instances.

We therefore propose to overcome these constraints of
reverse engineering domain models by extending their abil-
ities to handle imperfections. However, contrary to the ap-
proach of the TAO model, we do not extend the domain
model but rather aim for an extension of the underlying con-
ceptual model, i.e., a meta modeling approach.

Thus, an extension of conceptual models has the follow-
ing requirements:

Imperfection. Information gathered during the different RE
process steps need to be rated concerning quality and cred-
ibility. This should be based on a strict and formal method
in order to ensure a homogeneous rating of all results in
the repository and to guarantee comparability. It is useful to
base the rating method on a known and proven concept cov-
ering the handling of several kinds of imperfections, both
uncertain and vague knowledge. This will allow us to de-
scribe the quality and credibility of information in a neutral
way admitting a homogeneous, comparable, and automati-
cally processable representation of imperfect knowledge.

Figure 2 emphasizes the importance of this requirement.
In the TAO repository all results concerning artefact At-
tribute i are rated differently and informally, leading to un-
comparable pieces of information.

Automatic management of imperfect data. As suggested by
[10], it is necessary to explicitly model imperfect knowl-
edge, to be able to use it for further (automatic) analyses.
But it is not sufficient to model only the static aspect, the
management of imperfect data must be dealt with as well.
This concerns the most basic data management problems
like inserting, updating, or deleting imperfect data instances.
Moreover, the aspects of knowledge propagation and consol-
idation must be addressed. Some imperfect data instances
may form interdependencies, one enforcing or suppressing
the other. It is therefore necessary to develop operations
based on imperfect data models.

The following scenario based on the prior example gives
a motivation for this requirement. Storing the crisp result
— attribute i is implemented as a char — should lead to
a (partial) inconsistency warning when another crisp result
is stored stating that i is implemented as an integer. On the
other hand, a crisp information i is integer and an uncertain
information i is enumeration are at least partially compati-
ble. Attribute i as char might as well be the implementation
solution for the design type integer (storing small numeri-
cal values in a single byte). During the ongoing RE process,
more results that indicate an integer type as the correct RE
result arise. In the end this fact should be reflected in the
repository in such a way that it contains the knowledge of i
being of type integer encoding the days of the week as the
most certain and semantically richest result.

Uniform knowledge representation. An RE repository de-
scribes a legacy system in terms of artefacts defined by
a specific target model. The necessary extensions for han-
dling imperfect data should not change the domain model,
as not the domain artefacts are vague or uncertain but the
RE knowledge about those artefacts. Therefore the represen-
tation of knowledge ought to be modeled in a way that re-
flects its quality, origin, and credibility. A semantically rich
representation model should be able to handle both precise
and imperfect information in a common framework.

Additionally, it is necessary to solve the assignment prob-
lem. All RE data must be stored closely with their artefact.
There should be no limit as to how many different or even
contradicting results can be assigned to a specific artefact.

The points mentioned above represent a set of require-
ments which can not be fulfilled by conventional strict in-
formation modeling concepts like UML, TROLL, ER, or re-
lational modeling. These features are orthogonal to the fami-
lar concepts of data and information modeling.

In order to avoid “reinventing the wheel,” a key feature
of an enabling and holistic concept must be the following
mandatory constraint: the ability to integrate the approach

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

within already existing solutions. It must be possible to en-
hace existing RE frameworks and tools through an orthog-
onal extension, without the need for large restructuring or
reimplementation.

3. The fuzzy model

We now present the formal representation model we de-
veloped for the discovered requirements.

The central requirement for such a model is the ability to
handle several kinds of imperfections: uncertain and vague
information, as well as the ability to handle inconsistencies.
These requirements match the ones stated in [10].

Fuzzy-set theory is a well-known representation formal-
ism that can handle both kinds of imperfections [3, 13]. It
has also proven successful within a wide range of industrial
applications, most notably through the area of fuzzy control.

For the application within an RE repository we deploy
a fuzzy-set based model that has been developed especially
for the use within information systems [22]. It provides the
necessary features for supporting the requirements of the
RE process, especially the ability to backtrack information
and modify a knowledge base through non-monotonic be-
lief revision operators. We first review the basic features of
the model and then present some formal enhancements that
were necessary to capture the semantically rich structure of
RE information.

3.1. Representing imperfect information

The basic representational unit with our model is a fuzzy
set. A fuzzy set µA extends the characteristic function of a
set A from the binary {0, 1} (not member, member) to a con-
tinuous interval, typically in [0,1]. Thus, each element ω
from a domain Ω is assigned a corresponding membership
degree µ(ω) with which this element belongs to the fuzzy
set µA ∈ F(Ω).

A single fuzzy set can capture a single piece of im-
perfect information, both vague and uncertain. However,
within an RE repository a multitude of information from
different sources has to be managed, stored, and combined.
As pointed out in [23], mixing the semantics of different
sources into a single fuzzy set is not a suitable approach for
information systems, because it is important to keep track
of the source of each individual piece of (imperfect) infor-
mation. This can be achieved with a model that combines
the semantics of fuzzy sets with the syntactical features
from propositional logic [23]. Classical propositional logic
allows the construction of complex propositions from prim-
itives, the atoms, and their logical combination to literals,
clauses, and formulas. By substituting precise atoms with
fuzzy atoms, we can construct fuzzy propositions where
each logical constituent has a semantic interpretation in
form of a fuzzy set. Modifications can be done on the syn-
tactic level, e.g. by adding a new imprecise fact or vague in-

formation with a logical “and” operation, which leads to a
new semantic interpretation in form of a fuzzy set. The ba-
sic unit in this model is a fuzzy atom, which formalizes the
notion of imprecise concepts introduced above:

DEFINITION 1 (FUZZY CONCEPT VOCABULARY, FUZZY

ATOM) Let a domain Ω be given. A fuzzy concept vocabu-
lary over Ω is a triple (A(Ω),µ·,A·), where A(Ω) is a count-
able set of symbols and µ·,A· are mappings

µ . : A(Ω) → F(Ω),A �→ µA

A . : F(Ω) → A(Ω),µ �→ Aµ

satisfying µ . ◦ A . = idF(Ω). The elements of A(Ω) are
called fuzzy atomic concepts (or fuzzy atoms for short) over
Ω. The fuzzy set µA is called the interpretation of A and
the atom Aµ is called the (distinguished) name of µ .

Example (imperfect information) We construct an example
for a fuzzy clause. Here, three fuzzy atoms represent dif-
ferent imperfect information for the type of a variable, ob-
tained from different sources (e.g., source code analysis, re-
verse engineer, documentation). Each fuzzy atom indicates
how certain a given type can be attributed to the variable i.
The membership degree is interpreted in a possibilistic fash-
ion: a value of 0.0 (“impossible”) indicates that the variable
cannot be of this type, a value of 1.0 (“certain”) means that
none of the available information opposes the variable from
having this type (not that it must be of this type!), and val-
ues in between indicate varying degrees of compatibility of
the variable with the type. The fuzzy clause K formed from
these atoms represents the combined knowledge about the
variable i within an RE repository:

µA1 : type of i according to reverse engineer =
{int/0.8, string/0.1, char/0.1, bool/0, enum/0.0}
µA2 : type of i from source code analysis =
{int/0.2, string/0.0, char/1, bool/0, enum/0.1}
µA3 : type of i according to documentation =
{int/0.5, string/0.0, char/0.5, bool/0, enum/0.5}
µK = µ{A1,A2,A3} = µA1∨A2∨A3 : type of i (combined) =
{int/0.8, string/0.1, char/1, bool/0, enum/0.5}

Similarly, different fuzzy clauses can be combined to a fuzzy
formula by computing the logical and operation on the in-
dividual fuzzy clauses.1 Thus, all imperfect information re-
garding an artefact is stored in fuzzy conjunctive normal
form (FCNF), which helps to simplify operations.

The language of fuzzy atoms, fuzzy clauses, and fuzzy
formulas permits the aggregation of arbitrary pieces of im-
perfect information, however inconsistent they may be. This
is an important feature, because an RE system does not have

1 We use the standard functions for possibilistic fuzzy sets: min for in-
tersection, max for union, and 1−µ for computing the complement.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

to reject inconsistent information out of hand (as is the case
with conventional approaches), but can rather attempt to re-
store consistency by giving preference to some pieces over
others. This will be discussed later on in more detail when
we examine how imperfect information are processed.

3.2. Enhancements for RE repositories

This model has been enhanced to capture the semantics
needed for building fuzzy reverse engineering repositories.
These enhancements are based on the observation that the
various imperfect states representing the obtained knowl-
edge about a system cannot be changed independently, but
are rather tightly coupled. Consider for example informa-
tion obtained about the type of a variable, as illustrated in
the example above. If the knowledge about the variable
changes, e.g. because an additional source provides more
information, this change influences other information col-
lected in junction with the analyzed variable, like its usage.
It would be possible to represent these interactions implic-
itly by programming them into a fuzzy reverse engineer-
ing system. However, their frequent appearance suggests an
underlying phenomenon, which we decided to model ex-
plicitly by enhancing the fuzzy representation model dis-
cussed above.We call these interactions dependencies, they
are modeled by introducing a dependency graph into the
model:2

DEFINITION 2 (DEPENDENCY GRAPH) A (fuzzy) depen-
dency graph is a directed, acyclic graph G = (V,E,ξ) with
the set of vertices V , the set of directed edges E and a func-
tion ξ for associating every vertex v ∈ V with a fuzzy
formula F ∈ F (F being the set of all fuzzy formu-
las): ξ : V → F. Dependencies are transitive and acyclic.

Note that the dependency graph, by itself, only captures the
structure of dependencies between different types of infor-
mation within an RE repository. The automatic update of
dependent information is handled by special fuzzy opera-
tors that percolate changes through the graph. We will dis-
cuss these in the next section.

However, computations across these dependencies be-
come complicated by the fact that different fuzzy formulas,
attached to nodes in the graph, can be defined on different
domains (e.g., information regarding a variable’s type vs. its
usage). We therefore have to introduce transformation func-
tions Θ for mapping a concrete fuzzy set from one domain
Ω (e.g., the type) to another domain Ω′ (e.g., the usage):
ΘΩ,Ω′ : F(Ω) → F(Ω′). These functions are highly applica-
tion specific (we give an example below) and therefore have
to be defined in a separate data dictionary.

2 Note that Jahnke and Walenstein also state the requirement that depen-
dent beliefs must be modeled explicitly and processed automatically
when updating the knowledge base [10].

Example (dependency graph and transformation function)
In our example we have two domains, representing the
type and the usage of a variable, respectively. Hence, Ω1 =
type = {int, string, char, bool, enum} and Ω2 = usage =
{control, output, index, temp, input}. The corresponding de-
pendency graph G = (V,E,ξ) is quite simple, since it con-
tains only two vertices connected by a single directed edge:

V = {v1,v2},E = {(v1,v2)},ξ = {[v1,F1], [v2,F2]}
A possible transformation function Θtype,usage that con-

verts a fuzzy set µ1 from Ω1 to Ω2 is defined by:

Θtype,usage(µ1)(ω2) =




µ1(int) if ω2 = index

µ1(char) if ω2 = temp

µ1(bool) if ω2 = control

µ1(string) else.

A concrete example for the transformation of a fuzzy set
µ1 ∈ F(type) to a fuzzy set µ2 ∈ F(usage) is given by:

µA = µξ (v1) : type of i =
{int/0.5, string/0, char/1, bool/0.15, enum/0.15}
µΘtype,usage(A) = µξ (v2) : usage of i

{control/0.15, output/0, index/0.5, temp/1, input/0}

3.3. Processing imperfect knowledge

The challenge we address next is the modification of im-
perfect information stored in our fuzzy repository. Modifi-
cations within the RE domain are not restricted to simple
updates (in the sense of Katsuno and Mendelzon [11]), but
rather revisions, since we collect more and more informa-
tion about an already existing world (i.e., the legacy sys-
tem). Thus, new information concerning an artefact cannot
simply replace all existing information — we rather want to
combine it with the knowledge obtained so far.

As fuzzy clauses and formulas are sets, modifications
could be done by simply adding or removing fuzzy liter-
als or clauses. Simple set operators, however, are not con-
cerned with semantics — clauses added to a fuzzy formula
in this way can easily lead to inconsistencies in the fuzzy set
interpretation. But maintaining consistency was one of our
prime requirements for an RE repository: information com-
ing from different sources must be combined in such a way
that minor inconsistencies (within a specified degree) can
be tolerated, but larger contradictions must be resolved in
an automatic, consistency-preserving way.

Our solution to this problem is to define fuzzy operators
based on Gärdenfors-style (AGM) belief revision [2, 4, 5].
These operators are called γ-expansion, γ-revision, and γ-
contraction, they allow to modify a complex fuzzy formula
while maintaining a specified degree of consistency γ [23].
In the case of γ-revision for example, a new piece of in-
formation is either rejected, merged with all of the existing

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

information, or added while removing some fuzzy clauses
that are inconsistent to the new fuzzy formula within a spec-
ified degree γ . If existing information have to be removed
in order to restore consistency, only the minimally required
changes are performed. These operators have the following
semantics (for details and their formal definition please re-
fer to [23]):

Expansion: A γ-expansion adds new information (ex-
pressed as a fuzzy formula) to an existing set of infor-
mation (again a fuzzy formula), without removing any
existing clauses while ensuring that the resulting fuzzy for-
mula reaches a consistency degree of at least γ . If this is not
possible, the new information is rejected.

Revision: The γ-revision operation always adds new infor-
mation, if its consistency degree reaches at least γ . Existing
information (fuzzy clauses) may be removed in case there
is a partial or complete inconsistency.

Contraction: The γ-contraction operation removes infor-
mation from a knowledge set, in a way that preserves as
much of the existing information as possible while ensur-
ing that the result’s consistency degree reaches at least γ .

Additionally, these operators had to be extended for
the management of dependent information in dependency
graphs as defined above [22]. The semantics of the opera-
tions remain unchanged, but additionally each change of a
fuzzy formula now checks for dependencies in the graph,
applies transformation functions if necessary, and then com-
putes the operation on all dependent fuzzy formulas, until
no more edges lead out of a given node.

4. Fuzzy reverse engineering

In this section we show how the concepts of the fuzzy
model, the processing operators, and the RE repository in-
troduced above can be combined to a new fuzzy RE frame-
work. We first show how the fuzzy representation and pro-
cessing model can be integrated into an object-oriented
repository framework. This extension allows the coopera-
tion and coexistence of both classical and fuzzy knowledge
within a single repository, as well as the RE tools operat-
ing on it. Next, we illustrate our concepts on a concrete ex-
ample that shows how our fuzzy model and fuzzy repository
interact within the RE process. Finally, we state first require-
ments for fuzzy RE tools as a basis for future work.

4.1. The fuzzy extended TAO framework model

The first step is the fusion of the fuzzy representation
model and the RE repository model. As an example, we
demonstrate this step by blending our TAO framework and
the fuzzy model. Since the TAO repository is built on object-
oriented technology, we show how an OO model can be en-
hanced to handle fuzzy information (but the same extension
principle can be equally applied to other data models).

Facet

− fuzzy clauses
− fuzzy formulas

contains
− fuzzy sets
− fuzzy atoms
− fuzzy literals

− features
describes

− feature sets
− concepts

Annotatable Object

Concepts

features [1..n]

feature(x):result
feature(x,value)

feature(x,fuzzy):fuzzy_result
feature(x,fuzzy_value)

Troll_Artefact

depends_on

Annotation

Figure 3. The generic TAO fuzzy model

The main design idea is to add imperfect information
as an orthogonal extension through a frame-like concept,
which we call annotations. Each object (or part of an ob-
ject, like an attribute) holding RE information and meta-
information can thus be annotated with container objects re-
ferring to one or multiple meta-information objects, called
facets. Within our model, facets can store fuzzy information
in form of fuzzy components, like fuzzy sets, fuzzy literals,
fuzzy clauses, or fuzzy formulas.

This approach allows for a significant simplification of
the TAO framework, since it is no longer necessary to split
knowledge-keeping objects into FRAME and SHADOW ob-
jects. Rather than maintaining certain (crisp) data seperately
from imperfect (fuzzy) information in two disparate knowl-
edge hierarchies, the annotation model offers the possibil-
ity to fuzzify individually all parts of TAO artefacts — con-
cepts, features, and feature sets. As shown in Figure 3, every
TAO artefact inherits from the generic meta-object ANNO-
TATABLE OBJECT. Through inheritance all properties and
operations of the fuzzy model now become available within
the TAO framework.

As an additional side-effect, both reverse engineers and
automatic tools benefit from this new framework because
access and storage of different types of knowledge become
now seamless and adaptable.3

The annotatable object provides the main entry point to
the fuzzy knowledge. It is defined as an aggregation of anno-
tation objects. Each ANNOTATION is defined as a specific as-
pect of an artefact that is fuzzified. The information gained
about this specific aspect (may it be vague or precise) is then
represented in a set of FACET objects, together they form
the available domain knowledge. The interdependency be-
tween specific information that is supported by the fuzzy
dependency graph is modeled as a reflexive association of
the annotation object. Each of these objects defines a node,
the association set represents the edges within instantiated

3 Note that the same annotation model can simultaniously hold addi-
tional types of meta-information for an artefact by adding a facet of a
different type, e.g., statistical data, pictures, or speech.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

depends_on

Attribute i

restricted
initialized
Type
Usage

Annotation

Facet

type Usage

Annotation

type Type FuzzyFormula Type

Facet

FuzzyFormula Usage

Figure 4. Fuzzy instance model of variable i

fuzzy dependency graphs. The fuzzy operations defined on
FUZZYCOMPONENT objects and dependency graphs may
be used to output a fuzzy or de-fuzzified strict result. This
offers the possibility to deal both with precise and fuzzy in-
formation during RE when using automatic tools.

In Figure 4 the instance of a fuzzy artefact ATTRIBUTE is
shown. The attribute object is annotated with two annotation
objects describing the TYPE and USAGE features. One an-
notation keeps the RE knowledge about the type, the other
annotation stores the RE knowledge regarding the usage in
form of fuzzy formulas. Their fuzzy set interpretations are
equivalent to the ones shown in the transformation exam-
ple before. During the RE process the information collected
about usage and type are added as additional facets. The
process of adding information modifies the result with re-
spect to the system’s model being reengineered. When ask-
ing for e.g. the type of artefact i the answer evolves over
time, changing in a non-monotonic way as new evidence be-
comes available. At each point in time the RE system sup-
ports a certain interpretation of a system, similar to classi-
cal, crisp repositories. But we are now able to give an ex-
plicit evaluation of each result, showing its certainty and in-
ternal degree of consistency through the fuzzy set interpre-
tation. In the example below, we show how the interpreta-
tion for i changes from the inital assumption of a char vari-
able to an index for the days of the week coded from 1–7
plus 0 as default. But all information gathered is kept and
still evaluated as long as the RE process continues. This is a
significant advantage of the fuzzy extended domain model
and helps to perform RE tasks more efficiently and success-
fully.

4.2. Fuzzy reverse engineering process example

In this section we give a complete example that illus-
trates how the concepts of the fuzzy RE repository, the fuzzy
representation model, and the fuzzy operators interact. Here
we go back to the analysis of a program variable i, examin-
ing its implicit (and uncertain) type and usage information.

To begin, we assume a certain repository state represent-
ing information collected about variable i so far (collected
e.g. through source code analysis tools or information given
by the software reengineer). A fuzzy formula F1 holds the
available information about the variable’s type, represented
by a single fuzzy clause K1, which has the following fuzzy

set interpretation:

µK1 = {int/0.9, string/0.5, char/0.75, bool/0, enum/.15}
As can be seen from the fuzzy interpretation, there is a high
certainty for the variable being of type int or char, while
types bool or enum are rather unlikely. Moreover, we have
some information about the usage of i; here, two pieces of
information have been collected into a fuzzy formula, repre-
sented by two fuzzy clauses F2 = {K2,K3}:

µK2 : usage of i =
{control/0.8, output/0.5, index/0.2, temp/1.00, input/0.1}
µK3 : usage of i =
{control/0.2, output/0.5, index/1.0, temp/0.75, input/0.1}
µF2 : usage of i = µ{K2,K3} = µK2∧K3 =
{control/0.2, output/0.5, index/0.2, temp/0.75, input/0.1}
The first source clearly assumes i is a temp variable used for
computations, while the second source favours the interpre-
tation that i is an index variable, though it also indicates a
high certainty for it being a temp variable. When combined,
these two pieces of information result in the fuzzy interpre-
tation µF2 shown at the bottom. Note that even though the
certainty of i being an index variable has dropped signifi-
cantly because of the contradicting information, the origi-
nal clause K3 is still stored in the RE repository and will be
used when revising the information under new evidence, as
we will show below.

During the RE process, we receive further information
about the type of our variable i (e.g., from a data analysis,
or the program’s original documentation); in this example
represented by a fuzzy formula F3 = {K4} and its transfor-
mation (F3)

θ
v2

onto node v2 (usage):

µF3 = µ{K4} : type of i =
{int/0.9, string/0.5, char/0.1, bool/0, enum/0.1}
µ(F3)θ

v2
= µ{K5} : usage of i =

{control/0, output/0.5, index/0.9, temp/0.1, input/0.5}
This information gives a very high certainty that variable
i is indeed of type int and therefore used as an index vari-
able. However, this information is now partly inconsistent
with the information in the RE repository, which currently
favours the temp interpretation. Hence, we cannot simply
add it without receiving a contradictory and therefore use-
less result. Indeed, the attempt to add this piece of infor-
mation with the graph expansion operator introduced above
would result in a rejection for any consistency degree > 0.5.
The solution is to revise the RE repository through non-
monotonic consistency-maintaining fuzzy belief revision.
Thus, we attempt a graph revision, requesting a consistency
degree of at least 0.6: G′ = 〈G,v1〉⊕G

0.6F3. That is, we start
revising the belief network stored in the repository at the
node v1, which is associated with the type information about

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

variable i. The effect of this operation in this example is
twofold: Firstly, the fuzzy formula for the type itself is be-
ing revised, and secondly the new information is percolated
through the graph, revising all dependent information on the
path — in this example, the usage information attached to
node v2:

ξ ′(v1) = F4 = ξ (v1)⊕0.6 F3,

ξ ′(v2) = F5 = ξ (v2)⊕0.6 (F3)
θ
v2

The fuzzy formula (F3)
θ
v2

at vertex v2 is also shown above.

The transformation (F3)
θ
v2

= ΘF
type,usage(F3) uses the same

transformation function as in the example shown before.
This operation results in two revised fuzzy formulas,

which have the following fuzzy set interpretations:

µF4 = µ{K1,K4} : type of i =
{int/0.9, string/0.5, char/0.1, bool/0, enum/.1}
µF5 = µ{K3,K5} : usage of i =
{control/0, output/0.5, index/0.9, temp/0.1, input/.1}
Thus, the fuzzy clause K2 has been removed by the

graph revision operator from the fuzzy formula represent-
ing the usage of i. Note that the operator succeeded in restor-
ing a consistency of at least 0.6 as requested (actually 0.9 for
both type and usage), minimally changing the information
along the way. As a consequence, the degree of certainty for
the usage as an index variable has increased again.

In a real-world scenario, there will be thousands of arte-
facts that have to be examined, and possibly hundreds of in-
formation from many different sources. Note that the graph
operators proposed here provide a powerful and flexible tool
for maintaining a reverse engineering repository throughout
the RE process, since they admit inconsistency upto cer-
tain prescribed degrees. Hence, new information that are
collected throughout the RE process do not have to be re-
jected because of small inconsistencies, but can be stored
in the repository. This is important, since the whole RE pro-
cess now has more information available, stored in a formal
and automatically evaluable representation.

Moreover, the internal consistency of the repository can
be adjusted over time since the fuzzy graph operators al-
low for changing γ values: In the beginning of an RE pro-
cess, where there is a high degree of uncertainty and inter-
nal inconsistency, this value can be set quite low (perhaps
around 20%), allowing to store many beliefs that are incon-
sistent to a large degree, but are nevertheless all potentially
correct and important pieces of information. Later in the pro-
cess, the required consistency degree can be increased con-
tinuously, thereby taking all available information into ac-
count and finally converging to a consistent result.

5. Related work

The research areas of RE, program comprehension, and
software maintenance deal with the problem of eliciting and

processing imperfect knowledge. Von Mayrhauser, Vans,
and Howe carried out extensive studies to examine the na-
ture and process of program understanding, offering a pre-
cise model of the iterative and non-monotonic knowledge
elicitation process of software understanding [20], [21].

Quilici and Chin [19] developed the tool DECODE,
which offers an approach to externalize not only certain
knowledge but also the hypothetic knowledge of not know-
ing a specific fact. DECODE already combines automatic
and human-centered RE steps into a single repository. But
its approach is limited insofar as the transition of knowl-
edge states (from certain to uncertain to not-existing) is un-
supported.

The need for handling imperfect information during RE
processes is also stated by Jahnke and Walenstein [10]. The
solution offered in that paper handles uncertain informa-
tion within a single reverse engineering step, thereby resolv-
ing all imperfections within the VARLET tool [9]. They
then come up with a precise result, effectively erasing all
vaguenesses and contradictory interpretations of the gained
knowledge. Contrary to this approach we provide a fuzzy
meta model that enables all conceptual models of RE tools
and repositories to deal explicitly with uncertainty, vague-
ness, and the integration of conflicting or inconsistent infor-
mation sources or results throughout the whole RE process.

We support and extend the CORUM II approach by Kaz-
man et al. [12] in the sense that we offer additional pos-
sibilities to mitigate the problems arising from the integra-
tion of different information sources and abstraction levels.
Also Jahnke et al. [8] consider the problem of how to as-
sociate different views and perspectives in software main-
tenance. Even though the chosen approach is different, we
are convinced that a fuzzy extension can offer support and
benefit since it is necessary to integrate and consolidate
knowledge from different sources concernig a single arte-
fact in a homogenous way. By applying the fuzzy approach
and the orthogonal extension of conceptual models, inte-
gration of RE information can be separated from the prob-
lem of consistency handling. All knowledge is represented
equally throghout the integration process and can be pro-
cessed automatically, even if a specific item is (temporarily
or permanently) inconsistent. This is a significant advantage
given the iterative and diverse nature of reverse engineering.
Moreover, the automatic consistency handling through non-
monotonic revision operators is a major benefit in knowl-
edge integration tasks that concern large amounts of data
to be scanned and rated, with a high number of inconsisten-
cies that have to be resolved.

Repository-based engineering tools and frameworks like
COREM [14], Varlet [9], Fujaba [1], or commercial CASE
tools like Rational Rose and Together already offer some
kind of RE functionality. But as reported by Kollmann
et al. [15] these tools offer a rather limited and idiosyn-

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

cratic approach to the requirements of reverse engineering.
They are only able to include information provided by the
source code (and even this information source can not be
used to its fullest extent). These tools offer more or less a
transformation from source code to class hierachies and se-
quence/collaboration diagrams. Such features are of course
very helpful, but they do not meet the needs to integrate
different kinds of imperfect information. Also, most mod-
els are closed in the sense that they do not allow for an ex-
tension of the conceptual reverse engineering model. Espe-
cially with regard to an open and flexible repository domain
model our proposed fuzzy extension of the underlying meta-
model offers a significant improvement.

6. Conclusions and further work

In this paper we developed a fuzzy extension that can be
included within conceptual models of reverse engineering
repositories in order to improve their abilities to store and
process imperfect knowledge.

The features of this extension are (i) the formal defini-
tion of the term of imperfection (vagueness and uncertainty)
by introducing the concept of fuzzy formulas, (ii) the uni-
form representation of all (precise and imperfect) knowl-
edge concerning a specific reverse engineering artefact, and
(iii) the automatic handling of inconsistencies within spe-
cific instances through fuzzy belief revision operators.

We show exemplary how to perform the fuzzy extension
by applying our model to the TAO framework. The pro-
posed annotation approach allows for an orthogonal exten-
sion of existing conventional models, without requiring ex-
pensive re-implementations. Available resources and tools
can be incrementally enhanced to benefit from the semanti-
cally richer fuzzy model, gaining the ability to integrate dif-
ferent RE knowledge sources within a single, automatically
evaluable representation.

A formal representation model capable of handling im-
perfect information also offers new perspectives for other
research areas in RE. We envision the definition and devel-
opment of algorithms, heuristics, tools, and methods that in-
trinsically use fuzzy representations and operations in order
to provide results that are better suited to deal with the im-
perfect nature of reverse engineering.

References
[1] Fujaba homepage. http://www.fujaba.de.
[2] C. Alchourrón, P. Gärdenfors, and D. Makinson. On the

Logic of Theory Change: Partial Meet Contraction and Re-
vision Functions. Journal of Symbolic Logic, 2(50):510–530,
June 1985.

[3] E. Cox. The Fuzzy Systems Handbook. AP Professional, 2nd
edition, 1999.

[4] P. Gärdenfors. Knowledge in Flux. MIT Press, 1988.
[5] P. Gärdenfors, editor. Belief Revision. Cambridge University

Press, 1992.

[6] T. Hartmann, G. Saake, R. Jungclaus, R. Hartel, and J. Kusch.
Revised version of the modeling language TROLL — Troll
Version 2.0. Informatik-Berichte 94/03, Technische Univer-
sität Braunschweig, Abt. Datenbanken, April 1994.

[7] IEEE. IEEE Technical Council on Software Engineering.
http://www.tcse.org/revengr.

[8] J. Jahnke, H. Müller, N. Mansurov, and K. Wong. Fused
Data-Centric Visualizations for Software Evolution Environ-
ments. In Proc. of the 10th IWPC, pages 20–24, Paris, France,
June 27–29 2002. IEEE Computer Society.

[9] J. Jahnke and J. Wadsack. Varlet: Human-Centered Tool
Support for Database Reengineering. In Workshop on Soft-
ware Reengineering, Bad Honnef, Germany, 1999. Univer-
sity Koblenz-Landau.

[10] J. H. Jahnke and A. Walenstein. Reverse Engineering Tools
as Media for Imperfect Knowledge. In Proc. of the 7th
WCRE, pages 22–31. IEEE Computer Society Press, 2000.

[11] H. Katsuno and A. O. Mendelzon. On the Difference be-
tween Updating a Knowledge Base and Revising it. In KR,
pages 387–394. Cambridge, MA, April 22–25 1991.

[12] R. Kazman, S. G. Woods, and S. J. Carrierre. Require-
ments for Integrating Software Architecture and Reengineer-
ing Models: CORUM II. In Proc. of the 5th WCRE, pages
154–163. IEEE Computer Society Press, 1998.

[13] G. J. Klir and T. A. Folger. Fuzzy Sets, Uncertainty, and In-
formation. Prentice-Hall, 1988.

[14] R. Klösch and H. Gall. Objektorientiertes Reverse Engineer-
ing. Springer Verlag, 1995.

[15] R. Kollmann, P. Selonen, E. Stroulia, T. Systä, and
A. Zündorf. A Study on the Current State of the Art in Tool
Supported UML-Based Static Reverse Engineering. In Proc.
of the 9th WCRE. IEEE Computer Society, 2002.

[16] U. Kölsch and J. Laschewski. Objectifying Legacy Applica-
tion Systems Using a Specification Language Framework. In
Proc. of the ICSE’97 Workshop, Boston, MA, USA, 1997.

[17] U. Kölsch and J. Laschewski. A Framework for Object-
oriented Reverse Engineering of Legacy Information Sys-
tems. International Journal of Software Engineering and
Knowledge Engineering, 9(1):27–54, 1999.

[18] U. Kölsch and M. Wallrath. A Process Model for Control-
ling and Performing Re-engineering Tasks. In Proceedings
of the first CSMR, pages 20–24, Berlin, Germany, March 17–
19 1997. Euromicro, IEEE Computer Society Press.

[19] A. Quilici and D. N. Chin. DECODE: A Cooperative Envi-
ronment for Reverse-Engineering Legacy Software. In Proc.
of the 2nd WCRE. IEEE Computer Society Press, 1995.

[20] A. von Mayrhauser and A. Vans. Program Understanding:
Models and Experiments. In M. Yovits and M. Zelkowitz, ed-
itors, Advances in Computers, volume 40, pages 1–38, 1995.

[21] A. von Mayrhauser, A. Vans, and A. Howe. Program Un-
derstanding Behaviour During Enhancement of Large-Scale
Software. In Journal of Software Maintenance – Research
and Practice, volume 9, pages 299–327, 1997.

[22] R. Witte. Architektur von Fuzzy-Informationssystemen. BoD,
Norderstedt, Germany, 2002. ISBN 3-8311-4149-5.

[23] R. Witte. Fuzzy Belief Revision. In 9th Intl. Workshop
on Non-Monotonic Reasoning, pages 311–320, Toulouse,
France, April 19–21 2002. http://rene-witte.net.

Proceedings of the 10th Working Conference on Reverse Engineering (WCRE’03)
1095-1350/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

