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Abstract

Protein structure visualization tools render im-
ages that allow the user to explore structural fea-
tures of a protein. Context specific information
relating to a particular protein or protein family is
not easily integrated and must be uploaded from
databases or provided through manual curation
of input files. We describe a mixed natural lan-
guage processing and sequence analysis based ap-
proach for the retrieval of mutation specific anno-
tations from full text articles for rendering with
protein structures.

Keywords: Text Mining, Protein Structure Annotation,
Protein Function, ProSAT, Xylanase

1 INTRODUCTION

Natural language processing (NLP) techniques are progres-
sively being applied to support bioinformatic database cura-
tion projects as funding for manual expert curation cannot
continue indefinitely [4]. Challenges exist however both
in the definition of specific bioinformatic requirements and
the capabilities of information retrieval techniques.

As a case study for integrating information retrieval and
knowledge extraction with bioinformatic applications we
selected the annotation of protein structures with segments
of literature detailing the consequences of specific muta-
tions. For protein engineers, understanding the impact of
all mutations carried out on a protein family requires a com-
plex mapping of sequence mutants to a common structure.
Currently the protein mutation database (PMD) [11] and
associated visualization tools provide this capability. The
content of this database is limited however by the speed at
which newly published papers can be processed. In 1999
the PMD authors reported a three-year backlog of unpro-
cessed publications. Since the arrival of high-throughput
sequence modification techniques, such as directed evolu-
tion, a greater number of mutant sequences are produced

along with information about their improved performance
under precisely defined conditions. Coupled with a larger
number of protein structures, more sophisticated alignment
algorithms, like Fugue [15] or Muscle [9], and structure an-
notation tools [10], further improvements could be made to
the collation, mapping, and rendering of mutant sequence
information. Some structure visualization tools allow the
mapping of existing sequences to structures primarily to
enable overlay of sequence features stored in databases to
structures [10, 14]. Our aim is to employ language tech-
nology to improve access to annotations concerning the im-
pacts of mutations and apply these to 3D structures of pro-
teins. To do this we have developed a mixed NLP and se-
quence analysis approach that combines retrieval and anal-
ysis of protein sequences described in selected texts with
the extraction of specific sentences from the same texts that
describe mutations made to the protein sequences and their
impact on protein function. Our architecture facilitates a
mapping of mutations and legitimate annotations to a struc-
tural homolog in a format readable by structure visualiza-
tion tools (see Figure 1).

The remainder of this paper is structured as follows: In
the next section we discuss the system architecture with its
individual components. Section 3 describes a case study
using the xylanase protein family. The last section summa-
rizes our findings and outlines future work.

2 SYSTEM ARCHITECTURE

A system capable of extracting experimentally introduced
mutations from full-text papers and linking them to pro-
tein structure visualizations must be able to integrate doc-
ument retrieval, NLP-based text analysis, protein sequence
database access, protein sequence analysis, and output for-
mat generation within a single architecture. For this, we
designed a multi-tier information system based on the ar-
chitecture discussed in [18]. Figure 2 shows the main com-
ponents, organized by tier.

Users interact with the system using a standard web
client (tier 1). A web server (tier 2) receives a query (e.g.,
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for a protein family) and dispatches it to an IR subsystem
(tier 3), which retrieves relevant texts from the Web (e.g.,
NCBI’s PubMed) or a local database (tier 4).

Retrieved abstracts or full-length papers (where avail-
able) are then run through the NLP subsystem (tier 3) to
identify mutations and extract relevant information. This
information is then used by another tier 3 component to
searchEntrez1 in order to identify protein accessions and
retrieve protein sequences in FASTA format [13]. Mutated
residues located on eligible sequences are then combined
with the information extracted from the documents and con-
verted into tool-specific output formats (tier 2). The user
can then access the combined information through a pro-
tein visualization tool like ProSAT.

Within this paper, we do not discuss the information
retrieval (IR) part of the design. Many of the challenges
in document retrieval and conversion, as well as possible
solutions, are discussed within the context of the BioRAT
system [5].

2.1 NLP Subsystem

The NLP step needs to identify the proteins being mutated
so that the corresponding amino acid sequence can be re-
trieved from a database. To do this the retrieved documents
are run through an NLP subsystem that extracts proteins,
host organisms, mutations, their interrelations, as well as
provided accession numbers.

Our NLP component is based on the GATE(General
Architecture for Text Engineering)framework [6,7], one of

1Entrez is the integrated, text-based search and retrieval sys-
tem used at NCBI for the major databases, including PubMed,
Nucleotide and Protein Sequences, Protein Structures, Complete
Genomes, Taxonomy, and others. Seehttp://www.ncbi.
nlm.nih.gov/Database/index.html

the most widely used NLP tools. As it has been designed as
a component-based architecture, individual analysis com-
ponents (calledprocessing resources) can be easily added,
modified, or removed from the system. GATE is also be-
ing used by other biomedical systems, most notably Bio-
RAT [5].

A full text or abstract, once retrieved and converted
into a suitable input format, is run through a so-called pro-
cessing pipeline of NLP components, which we describe in
more detail below.

Preprocessing and Gazetteering. After dividing the in-
put stream into individual tokens in thetokenizationstep,
a lookup phase identifies words and expressions based on
a number of precompiled lists. This includes lists like
person names, dates, locations, companies, measurements,
and, most importantly for our task, biomedical-related lists,
like chemicals, drugs, genetic structures, or protein names.
Based on these lists, aGazetteercomponent annotates
words with a major and minor type, which forms a two-
level hierarchy, similar to a (very simple) ontology. For
the non-biomedical information, we rely on lists developed
by the CLaC group for the newspaper article domain [2,3],
which are based on the ANNIE information extraction sys-
tem that comes with GATE. Biomedical lists use the same
resources as the BioRAT system described in [5]: lists of
entries extracted from the MeSH hierarchy and SwissProt,
together holding more than five million words in roughly
650,000 entries.

Named Entity Recognition. In the next phase, sev-
eral finite-state transducers combine individual tokens into
more complex named entities (NE), based on regular-
expression grammars, which are run over the annotations
generated by the previous step. Examples for entities we
detect arepersons(containing a first name, last name, and
possibly initials),protein expressions, or database acces-
sion identifiers. At this stage we also identifymutation ex-
pressions, which can occur in many different formats.

Sentence Splitting and POS Tagging. The next two
components split the input text into individual sentences
and then for each sentence annotate each word with itspart-
of-speech tag, for example, verb, adjective, or noun. For
this, we use the CLaC sentence splitter (an enhanced ver-
sion of the ANNIE sentence splitter) and the Hepple tagger
that comes with the GATE system.

NP Chunking. Another JAPE (finite-state transducer)
grammar analyses the text and builds up more complex
grammatical structures, so-callednoun phrases, which in-
clude determiners, modifiers, and head nouns. For example,
the words“The specific enzyme activity”will be identified
as a single noun phrase (NP) with its words marked up as
“The/DET specific/MOD enzyme/MOD activity/HEAD”.

http://www.ncbi.nlm.nih.gov/Database/index.html
http://www.ncbi.nlm.nih.gov/Database/index.html
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Figure 2: System Architecture

Another grammar stage then joins basic NPs that ap-
pear within certain grammatical structures, like preposi-
tions or conjunctions. ThisNP chunkingallows us to locate
important entities more precisely, for example, in the sen-
tence“The specific enzyme activity of mutant E210D was
0.8%. . .” we can identify the whole phrase up to E210D as
a single (complex) noun phrase and thus determine that it is
really the activity that is 0.8%, not the “E210D” (as a naive
approach might infer based on location).

Another important feature of our NP chunker is its abil-
ity to incorporate the named entities detected above in addi-
tion to using POS tags. This allows us to alleviate some of
the problems that result from using standard POS taggers,
which are statistically trained on more general domains like
newspaper articles, for biomedical documents. This typi-
cally results in a number of mis-tagged words, which in
turn degrades NP precision.

Relation Detection. The last (and currently most prob-
lematic) step is the correct identification and interpretation
of relations between entities. For our task, we need to be
able to identify two kinds of relations: betweenproteins
and mutations,that is, which protein has been mutated
within the described experiment; and betweenproteins
andtaxonomic origin,which we need to correctly retrieve
amino acid sequences from protein sequence databases.

For the protein-mutation identification, we currently ex-
tract all sentences that contain mutation expressions as iden-
tified by the corresponding NE grammar. We then scan
these sentences for the protein expression, making the sim-
ple assumption that the protein mentioned together with the
mutations must be the one that has been mutated. For ex-

ample, in the sentence:“Wild-type and mutated xylanase
II proteins (termed E210D and E210S) were expressed in S.
cerevisiae grown in liquid culture.”we identify two muta-
tions, E210D and E210S, and one protein expression,“xy-
lanase II proteins,”which we then assume is the protein be-
ing mutated. As this approach is quite simplistic, it might
fail in a number of cases, especially when more than one
protein mutation is described within a single paper. How-
ever, since we only extract those mutations where we can
identify a corresponding host organism, this approach has
been shown to work reliably within our case study on se-
lected xylanase papers.

For extracting the second (protein-host) relation we use
a template-based approach that matches certain NP-NP pat-
terns where one noun phrase contains the protein expres-
sion identified as the one being mutated (e.g.,xylanase II),
with NPs containing an expression marked as an organism
(e.g., algae or fungi).

We plan to enhance this step in the future with a more
detailed linguistic analysis that first performs a complete
syntactical analysis (a full parse) of the sentences and then
extracts predicate-argument structures from the parse trees,
however, this is still under development.

2.2 Protein Sequence Retrieval and Analysis

The protein sequence retrieval and analysis component at-
tempts to identify protein sequence accessions based on the
protein and host organism names obtained in the NLP sys-
tem. It then retrieves formatted protein sequences and ana-
lyzes them for similarity. Outlying sequences are removed,
producing a list of sequences for which protein mutation
annotations will be retrieved.



<menue>
<s ta tus =on>
<l abe l>

Journa l o f Biotechnology 88 (2001 ) 37 ,46 Ossi Turunen e t a l
</ l abe l>
<i tem>

<range>110:A 110 :A , 154 :A 154 :A</range>
<c o l o r =yel low><s ta tus =on>
<l abe l>Mutat ions a t th ree p o s i t i o n s were in t roduced to the

XYNII mutant con ta in ing a d i s u l f i d e br idge ( S110C:N154C )
i n the alpha−h e l i x . The d i s u l f i d e br idge increased the
ha l f− l i f e o f XYNII from less than 1 min to 1 4 min a t 6 5 C

</ l abe l>
</i tem>
<i tem>

<range>162:A 162 :A</range>
<c o l o r =red><s ta tus =on>
<l abe l>An a d d i t i o n a l mutat ion a t the C−terminus o f the

alpha−h e l i x ( Q162H or Q162Y ) increased the ha l f− l i f e
to 6 3 min . Mutat ions Q162H and Q162Y alone had a
s t a b i l i z i n g e f f e c t a t 5 5 C but not a t 6 5 C

</ l abe l>
</i tem>
<i tem>

<range>11:A 11 :A , 3 8 :A 38 :A </range>
<c o l o r =red><s ta tus =on>
<l abe l>The mutat ions N11D and N38E increased the

ha l f− l i f e to about 100 min .
</ l abe l>

</i tem>
</menue>

Figure 3: Template with extracted information used for
ProSAT visualization

To achieve this, a protein name and originating organ-
ism obtained by NLP analysis is used as input toEntrezfor
retrieval of protein sequence accession and the sequence.
The FASTA formatted sequence of the top hit is obtained
and the identity of the amino acid at the position described
as mutated in the publication is checked. Further evalu-
ation of domain complexity on the sequence using CDD
(Conserved Domain Database)search tools [12] is carried
out. Where the retrieved sequences contain multiple do-
mains the non-target protein sequence is removed while
maintaining the original residue numbering. The degree of
sequence identity between all retrieved sequences is deter-
mined by producing multiple sequence alignments (MSA)
with CLUSTAL W [16], which are then statistically scored
usingalistat [8] to determine the overall similarity of the
sequences. The most distant sequence in the alignment is
calculated by finding the maximum pairwise identity (best
relative) for all sequences, then finding the minimum of
these numbers and hence, the most outlying sequence. It-
eratively, the most outlying sequence is removed and the
alignment remade and rescored withalistat until the most
outlying sequence is within a specific threshold. A con-
sensus sequence is generated and a BLAST(Basic Local
Alignment Search Tool)[1] search is used to identify the
closest structural homolog. Each of the sequences in the
MSA is then aligned, pairwise, with the sequence of the
closest structural homolog using BLAST. Residue align-
ment is recorded for identification of the equivalent residue

Figure 4: ProSAT showing annotations extracted through
text mining (enlarge electronic version for details)

in the structural homolog to receive annotations described
in a text. A local sequence homology is calculated for the
region covering the mutated residue and five amino acids
up and downstream to evaluate the legitimacy of the anno-
tation transfer. A threshold of conservation is applied to
infer legitimacy.

2.3 Output Template Generation

After sequence analysis has legitimized the transfer of an-
notations from a particular text to a residue on the structural
homolog, sorting and formatting of sentences is necessary.
Formatted annotations are produced depending on the input
format for a particular visualization tool.

Here, only the ProSAT template [10] with additional
provision for non-database annotations is employed (per-
sonal communication R. Gabdoulline), while other tools
could be enhanced for this purpose as well.

Annotations are uploaded to the ProSAT server and ren-
dered on the structural homolog through a Webmol inter-
face. Coloured mutated residues are highlighted in struc-
ture and described in a corresponding annotation panel.

3 CASE STUDY

To demonstrate the feasibility of our approach for annota-
tion of a protein structure with useful mutation annotations
we selected xylanases as a protein family of interest to us.
Xylanase (EC 3.2.1.8) is a family of enzymes that can de-
polymerise the hemicellulose and plant cell wall compo-
nent xylan to simple sugars. Many industrial applications
exist for this fibre modifying enzyme and numerous publi-
cations describe mutations made to xylanases in order to
improve their properties.



PMID Entrez Protein Accession Found Accession Protein Name Organism Fam. #M Abst. Trim

8855954 gi|121856|sp|P07986|GUX CELFI Yes None CEX xylanase Cellulomonas fimi 10 3 Yes Yes
1359880 gi|1351447|sp|P00694|XYNA BACPU Yes None Xylanase Bacillus pumilus 11 3 Yes No
8019418 gi|139865|sp|P09850|XYNA BACCI Yes None Xylanase Bacillus circulans 11 2 Yes No
10220321 gi|139865|sp|P09850|XYNA BACCI Yes 1bvv, 2bv Xylanase Bacillus circulans 11 1 Yes No
10860737 gi|139865|sp|P09850|XYNA BACCI Yes 1C5H, 1C5I Xylanase Bacillus circulans 11 1 Yes No
11601976 gi|139886|sp|P10478|XYNZ CLOTM Yes None Xylanase Z Clostridium thermocellum 10 1 Yes Yes
10752608 gi|17942986|pdb|1HIX|B No None Xyl1 Streptomyces Sp. S38 11 5 No No
9930661 gi|465492|sp|P33557|XYN3 ASPKA Yes None Xylanase C Aspergillus kawachii 11 1 Yes No
8376336 gi|533366|gb|M97882.1|TEOENDXYLA No M97882 Xylanase T. saccharolyticum 11 3 Yes No
11377763 gi|549461|sp|P36217|XYN2 TRIRE Yes None Xylanase II Trichoderma reesei 11 3 Yes No
11917150 gi|549461|sp|P36217|XYN2 TRIRE Yes None Xylanase II Trichoderma reesei 11 11 Yes No
15129722 gi|549461|sp|P36217|XYN2 TRIRE Yes None Xylanase II Trichoderma reesei 11 2 Yes No
15260499 gi|549461|sp|P36217|XYN2 TRIRE Yes P36217, P362 Xylanase II Trichoderma reesei 11 3 Yes No
15278768 gi|549461|sp|P36217|XYN2 TRIRE Yes None Xylanase II Trichoderma reesei 11 3 Yes No
7764794 gi|6226911|sp|P26514|XYNA STRLI Yes None Xylanase A Streptomyces lividans 10 3 Yes Yes
9201919 gi|6226911|sp|P26514|XYNA STRLI Yes None Xylanase A Streptomyces lividans 10 2 Yes Yes
9681873 gi|6226911|sp|P26514|XYNA STRLI Yes None Xylanase A Streptomyces lividans 10 1 Yes Yes
10235626 gi|6226911|sp|P26514|XYNA STRLI Yes None Xylanase A Streptomyces lividans 10 4 Yes Yes
9731776 gi|640242|pdb|1BCX| No None β -1,4-glycosidase Cex 11 2 Yes No

Table 1:Entrezprotein accessions for xylanases using protein names and taxonomic origins extracted from full text articles

In the current study we retrieved 20 texts describing mu-
tations to xylanase proteins using keyword searches. We
wished to retrieve the protein sequences corresponding to
these papers. In the majority of papers the database acces-
sion identifiers for the xylanase proteins were absent. The
NLP subsystem was able to identify protein names and tax-
onomic origins, which were then used to search the protein
sequence databaseEntrezfor the protein accession identi-
fiers. Table 1 summarizes our case study’s main results, in-
cluding the PubMed IDs (PMID) for the abstracts of each
article investigated and theEntrez protein accessions re-
trieved. Additionally, column “#M” in the table shows the
number of mutations described in each paper.

Due to missing entries in the Gazetteer lists our system
failed to mark upThermoanaerobacteriumor pimulusas
genera and species, respectively, preventing the automated
retrieval of the protein identifier and sequences. Multiple
papers referred to the same proteins reducing the overall
number of sequences retrieved. Three protein sequences
also included non-xylanase domains, which we trimmed
out by using CDD to find the coordinates of the xylanase do-
mains. These sequences are highlighted in column “Trim.”
To review the overall similarity of the sequences a multiple
sequence alignment of the retrieved sequences was carried
out (see Figure 5 in the appendix). Here we can see the
degree of sequence divergence between xylanases of differ-
ent subfamilies, both family 11 and family 10 xylanases
were represented (compare with column “Fam.”). The final
MSA contained only family 11 xylanases and thealistatsta-
tistical scoring of these sequences identified them as having
greater than 70% similarity to each other. This was the min-
imum similarity threshold for NLP extraction and mapping
of mutation specific annotations to proceed. Mapping of
sequences to the structural homolog was achieved by pair-
wise alignment with structure-sequence 1REF, representing
the xylanase II fromTrichoderma reesei. Texts describing

mutations on these sequences were analyzed and the NLP
annotations extracted and sorted with a relevance score.

The structure-sequence residues equivalent to those in
mutated sequences were written along with the highest scor-
ing text annotations into the ProSAT structural visualiza-
tion template as shown in Figure 3. Together the 20 papers
evaluated in this case study describe 54 amino acid residues
that had been mutated, 14 on family 10 and 40 on fam-
ily 11 xylanases. Figure 4 shows a screenshot of ProSAT
rendering 1REF (family 11 structure-sequence) with five
mutated residues highlighted and additional annotations de-
rived from [17], which describe the impact of mutations on
xylanase thermostability through the introduction of new
disulphide bridges.

4 CONCLUSIONS AND FUTURE WORK

In this paper we present a system architecture capable of au-
tomatically extracting mutation information from protein
engineering literature for enriching the information pro-
vided by visualization tools. Our system relies to a large ex-
tent on components and resources that are available already,
but have never before been integrated within a single archi-
tecture for the purpose of protein structure visualization.

While our system is still in its early stages of develop-
ment and more rigorous evaluations are needed, we nev-
ertheless believe it to be important to show how the vast
amount of information available online today can be ex-
ploited in an automatic fashion for the bioengineer.

One of our main contributions, therefore, is to highlight
the challenges involved in integrating literature-derived an-
notations with in-silico biology and to consider the extent
to which the integration of text mining systems with tools
and databases already available can provide additional in-
sight to structural biology and protein engineering. While
NLP-based approaches cannot retrieve 100% of all relevant
protein accessions and their annotations, even a recall rate



of 25%–50% would be a vast improvement over the cur-
rently available rate of ca. 5% accessible through manually
curated databases. Protein engineers get immediate access
to current and historical research results, without a need for
time-consuming, manual literature search.

Our next step will be the development of a larger cor-
pus of test documents in order to obtain precision and recall
measures for our system and to aid in detecting shortcom-
ings for further developments. We also plan on collaborat-
ing with visualization tool developers to allow for display-
ing more complex annotations that can be tied directly with
our text analysis component, thus allowing for a more struc-
tured and flexible view than it is possible through simple
sentence extraction.

In the future, a system as described here could also
be integrated with full-text databases like PubMed Central
(PMC), enabling automatic extraction of relevant informa-
tion from newly submitted documents and their delivery,
in the form of a web service, to various clients, including
structural visualization tools.
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Appendix

CLUSTAL W (1.82) multiple sequence alignment
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1 -----------MFKFKKNFLVGL-------SAALMSISLFSATASAASTD gi|139865|sp|P09850|XYNA_BACCI
1 ----------------------------------------------ASTD gi|640242|pdb|1BCX|Xylanase
1 -----------------------------------DTVITTNQTGTNNGY gi|17942986|pdb|1HIX|BChain
1 ---------MNLRKLRLLFVMCIGLTLILTAVPAHARTITNNEMGNHSGY gi|1351447|sp|P00694|XYNA_BACP
1 -----MVSFTSLLAASPPSRASCRPAAEVESVAVEKRQTIQPGTGYNNGY gi|549461|sp|P36217|XYN2TRIRE
1 ---------------MKVTAASAGLLGHAFAAPVPQPVLVSRSAGIN--- gi|465492|sp|P33557|XYN3_ASPKA
1 MKWDATEPSQNSFSFGAGDRVASYAADTGKELYGHTLVWHSQLPDWAKN- gi|121856|sp|P07986|GUX_CELFI
1 MKIDATEPQRGQFNFSSADRVYNWAVQNGKQVRGHTLAWHSQQPGWMQS- gi|6226911|sp|P26514|XYNA_STRL
1 MKFDALQPRQNVFDFSKGDQLLAFAERNGMQMRGHTLIWHNQNPSWLTNG gi|139886|sp|P10478|XYNZ_CLOTM
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33 YWQNWTDGGGIVNAVNGSGGNYSVNWSN--TGNFVVGKG----------W gi|139865|sp|P09850|XYNA_BACCI
5 YWQNWTDGGGIVNAVNGSGGNYSVNWSN--TGNFVVGKG----------W gi|640242|pdb|1BCX|Xylanase

16 YYSFWTDGGGSVSMNLASGGSYGTSWTN--CGNFVAGKG----------W gi|17942986|pdb|1HIX|BChain
42 DYELWKDYGN-TSMTLNNGGAFSAGWNN--IGNALFRKGK---KFDSTRT gi|1351447|sp|P00694|XYNA_BACP
46 FYSYWNDGHGGVTYTNGPGGQFSVNWSN--SGNFVGGKG----------W gi|549461|sp|P36217|XYN2TRIRE
33 YVQNYNGNLADFTYDESAG-TFSMYWEDGVSSDFVVGLG----------W gi|465492|sp|P33557|XYN3_ASPKA
50 -LNGSAFESAMVNHVTKVADHFEGKVASWDVVNEAFADGDGPPQDSAFQQ gi|121856|sp|P07986|GUX_CELFI
50 -LSGSALRQAMIDHINGVMAHYKGKIVQWDVVNEAFADGSSGARRDSNLQ gi|6226911|sp|P26514|XYNA_STRL
51 NWNRDSLLAVMKNHITTVMTHYKGKIVEWDVANECMDDSGNGLRSSIWRN gi|139886|sp|P10478|XYNZ_CLOTM

110
.

120
.

130
.

140
.

150
.

71 TTGSPFRTINYN-AGVWAPNGNGYLTLYGWTRSP----LIEYYVVDSWGT gi|139865|sp|P09850|XYNA_BACCI
43 TTGSPFRTINYN-AGVWAPNGNGYLTLYGWTRSP----LIEYYVVDSWGT gi|640242|pdb|1BCX|Xylanase
54 ANG-ARRTVNY--SGSFNPSGNAYLTLYGWTANP----LVEYYIVDNWGT gi|17942986|pdb|1HIX|BChain
86 HHQLGNISINY--NASFNPGGNSYLCVYGWTQSP----LAEYYIVDSWGT gi|1351447|sp|P00694|XYNA_BACP
84 QPGTKNKVINF--SGSYNPNGNSYLSVYGWSRNP----LIEYYIVENFGT gi|549461|sp|P36217|XYN2TRIRE
72 TTG-SSNAISYS-AEYSASGSSSYLAVYGWVNYP----QAEYYIVEDYGD gi|465492|sp|P33557|XYN3_ASPKA
99 KLGNGYIETAFRAARAADPTAKLCINDYNVEGIN-AKSNSLYDLVKDFKA gi|121856|sp|P07986|GUX_CELFI
99 RSGNDWIEVAFRTARAADPSAKLCYNDYNVENWTWAKTQAMYNMVRDFKQ gi|6226911|sp|P26514|XYNA_STRL

101 VIGQDYLDYAFRYAREADPDALLFYNDYNIEDLG-PKSNAVFNMIKSMKE gi|139886|sp|P10478|XYNZ_CLOTM

160
.

170
.

180
.

190
.

200
.

116 YRP-TGTYK-GTVKSDGGTYDIYTTTRYNAPSIDGD-RTTFTQYWSVRQS gi|139865|sp|P09850|XYNA_BACCI
88 YRP-TGTYK-GTVKSDGGTYDIYTTTRYNAPSIDGD-RTTFTQYWSVRQS gi|640242|pdb|1BCX|Xylanase
97 YRP-TGTYK-GTVTSDGGTYDVYQTTRVNAPSVEG--TKTFNQYWSVRQS gi|17942986|pdb|1HIX|BChain

130 YRP-TGAYK-GSFYADGGTYDIYETTRVNQPSIIG--IATFKQYWSVRQT gi|1351447|sp|P00694|XYNA_BACP
128 YNPSTGATKLGEVTSDGSVYDIYRTQRVNQPSIIG--TATFYQYWSVRRN gi|549461|sp|P36217|XYN2TRIRE
116 YNPCSSATSLGTVYSDGSTYQVCTDTRTNEPSITG--TSTFTQYFSVRES gi|465492|sp|P33557|XYN3_ASPKA
148 RGVPLDCVGFQSHLIVG---QVPGDFRQNLQRFADLGVDVRITELDIRMR gi|121856|sp|P07986|GUX_CELFI
149 RGVPIDCVGFQSHFNSGS--PYNSNFRTTLQNFAALGVDVAITELDIQG- gi|6226911|sp|P26514|XYNA_STRL
150 RGVPIDGVGFQCHFINGMSPEYLASIDQNIKRYAEIGVIVSFTEIDIRIP gi|139886|sp|P10478|XYNZ_CLOTM
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163 KRPTGSNATITFTNHVNAWKSHGMNLGSNWAYQVMATEG----------- gi|139865|sp|P09850|XYNA_BACCI
135 KRPTGSNATITFTNHVNAWKSHGMNLGSNWAYQVMATCG----------- gi|640242|pdb|1BCX|Xylanase
143 KRTGGS---ITAGNHFDAWARYGMPLGSFNYYMIMATEG----------- gi|17942986|pdb|1HIX|BChain
176 KRTSGT---VSVSAHFRKWESLGMPMG-KMYETAFTVEG----------- gi|1351447|sp|P00694|XYNA_BACP
176 HRSSGS---VNTANHFNAWAQQGLTLG-TMDYQIVAVEG----------- gi|549461|sp|P36217|XYN2TRIRE
164 TRTSGT---VTVANHFNFWAQHGFGNS-DFNYQVMAVEA----------- gi|465492|sp|P33557|XYN3_ASPKA
195 TPSD-ATKLATQAADYKKVVQACMQVTRCQGVTVWGITDKYSWVPDVFPG gi|121856|sp|P07986|GUX_CELFI
196 ----------APASTYANVTNDCLAVSRCLGITVWGVRDSDSWRSEQTP- gi|6226911|sp|P26514|XYNA_STRL
200 QSENPATAFQVQANNYKELMKICLANPNCNTFVMWGFTDKYTWIPGTFPG gi|139886|sp|P10478|XYNZ_CLOTM

260
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.

202 ------YQSSGSSNVTVW------ gi|139865|sp|P09850|XYNA_BACCI
174 ------YQSSGSSNVTVW------ gi|640242|pdb|1BCX|Xylanase
179 ------YQSSGSSSISVS------ gi|17942986|pdb|1HIX|BChain
211 ------YQSSGSANVMTNQLFIGN gi|1351447|sp|P00694|XYNA_BACP
211 ------YFSSGSASITVS------ gi|549461|sp|P36217|XYN2TRIRE
199 ------WSGAGSASVTISS----- gi|465492|sp|P33557|XYN3_ASPKA
244 EGAALVWDASYAKKPAYAAV---- gi|121856|sp|P07986|GUX_CELFI
235 ----LLFNNDGSKKAAYWAV---- gi|6226911|sp|P26514|XYNA_STRL
250 YGNPLIYDSNYNPKPAYNAI---- gi|139886|sp|P10478|XYNZ_CLOTM

X non conserved

X similar

X conserved

X all match

Figure 5: Alignment of xylanase sequences retrieved fromEntrezusing protein names and organisms obtained by NLP analysis
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