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Abstract

An important software engineering artefact used by developers and maintainers to assist in software comprehension
and maintenance is source code documentation. It provides the insight needed by software engineers when performing
a task, and therefore ensuring the quality of this documentation is extremely important. In-line documentation is at the
forefront of explaining a programmer’s original intentions for a given implementation. Since this documentation is
written in natural language, ensuring its quality so far needed to be performed manually. In this paper, we present an
effective and automated approach for assessing the quality of in-line documentation using a set of heuristics, targeting
both the quality of language and consistency between source code and its comments. Our evaluation is made up of
two parts: We first apply the JavadocMiner tool to the different modules of two open source applications (ArgoUML
and Eclipse) in order to automatically assess their intrinsic comment quality. In the second part of our evaluation, we
correlate the results returned by the analysis with bug defects reported for the individual modules in order to examine
connections between natural language documentation and source code quality.

Keywords: Text Mining, Software Engineering, Source Code Comments, Automated Quality Analysis, Javadoc,
Ontology

1. Introduction

Over the last decade, software engineering processes have constantly evolved to reflect cultural, social, technological,
and organizational changes. Among these changes is a shift in development processes from document driven to agile
development, which focuses mainly on software development rather than documentation. This ongoing paradigm
shift leads to situations where source code and its comments often become the only available system documentation
capturing program design and implementation decisions. A multitude of other software engineering artefacts also
contain a significant amount of information written in informal natural language, e.g., version control commit messages
or bug reports. Source code comments are essential when trying to perform software comprehension and maintenance
tasks. Studies have shown that the effective use of comments “can significantly increase a program’s comprehension”
[1], yet the amount of research focused towards the quality assessment of in-line documentation is limited [2]. Recent
advancements in the field of natural language processing (NLP) has enabled the implementation of a number of
robust analysis techniques that can assist users in content analysis. Furthermore, the close proximity of in-line
documentation to the source code enables us to develop additional heuristics to also assess the consistency between
code and documentation, which is known to often degrade due to changes in source code not being reflected in their
comments. Results of the NLP analysis are then exported into OWL ontologies, which allow to query, reason, and
cross-link them with other software engineering artefacts, contributing towards the creation of a rich knowledge base
incorporating multiple software repositories [3].
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2. Background

In this section, we discuss background relevant for the presented work, in particular Javadoc and the impact of
in-line documentation on software maintenance.

2.1. Source Code Comments and their Impact on Software Maintenance

With millions of lines of code written every day, the importance of good documentation cannot be overstated.
Well-documented software components are easily comprehensible and therefore, maintainable and reusable. This
becomes especially important in large software systems [4]. Since in-line documentation comes in contact with various
stakeholders of a software project, it needs to effectively communicate the purpose of a given implementation to the
reader. However, the only means of assessing the quality of in-line documentation currently available is through
performing time-consuming manual code checks.

Any well-written computer program should contain a sufficient number of comments to permit people to understand
it. Development programmers should prepare these comments when they are coding and update them as the programs
change. There exist different types of guidelines for in-line documentation, often in the form of programming standards,
like the GNU Coding Standards.1 In general, each program module should contain comments that capture a module’s
logic, purpose and rationale. Such comments may also include references to subroutines and descriptions of conditional
processing. Specific comments for specific lines of code may also be necessary for unusual coding. For example, an
algorithm (or formula) for a calculation may be preceded by a comment explaining its source, the data required, and
the result of the calculation and how the result is used by the program.

Writing in-line documentation is often seen as a painful and time-consuming task that is easily neglected due
to release or launch deadlines. Since customers are mostly concerned with the functionality of an application,
implementation and bug fixing tasks receive a higher priority compared to documentation tasks. Furthermore, finding a
balance, describing all salient program features comprehensively and concisely is another challenge programmers face
while writing in-line documentation. Ensuring that development programmers use the facilities of the programming
language to integrate comments into the code and update those comments is an important aspect of software quality.
Even though the impact of poor quality documentation is widely known, only very limited research exists that focuses
on the automated assessment of in-line documentation [5].

1 /∗∗
2 ∗ Manages the event changes of elements within a UML model,
3 ∗ and uses the {@link ActivityGraphsHelper } helper .
4 ∗ @author Bob Tarling
5 ∗ @param source The bean that fired the event .
6 ∗ @param propertyName The programmatic name of the property
7 ∗ that was changed.
8 ∗ @param oldValue The old value of the property .
9 ∗ @param newValue The new value of the property .

10 ∗ @param originalEvent The event that was fired internally
11 ∗ in the Model subsystem that caused this .
12 ∗/
13 public AttributeChangeEvent(Object source , String propertyName,
14 Object oldValue , Object newValue, EventObject originalEvent )

Figure 1: A Javadoc Comment for an ArgoUML Constructor

2.2. In-line Documentation and Javadoc

Literate programming was suggested in the early 1980’s by Donald Knuth [6] in order to combine the process of
software documentation with software programming. Its basic principle is the definition of program fragments directly
within software documentation. Literate programming tools can further extract and assemble the program fragments as
well as format the documentation. The extraction tool is referred to as tangle while the documentation tool is called

1GNU Coding Standards, http://www.gnu.org/prep/standards/standards.html
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weave. In order to differentiate between source code and documentation, a specific documentation or programming
syntax has to be used.

Single-source documentation, like Javadoc [7], also falls into the category of documents with inter-weaved
representation. Contrary to the literate approach, Javadoc documentation is added to source code in form of comments
that are ignored by compilers. Given that programmers typically lack the appropriate tools and processes to create and
maintain documentation, it has been widely considered as an unfavourable and labour-intensive task within software
projects [8]. Documentation generators are designed to lessen the efforts needed by developers when documenting
software, and have therefore become widely accepted and used. Javadoc is a well-known tool that generates API

Figure 2: Documentation generated using Javadoc for an ArgoUML Constructor

documentation in HTML from Java source code and its comments [7]. Figure 1 shows an example of a Javadoc
comment taken from the open source project ArgoUML, with the corresponding generated documentation in Figure 2.

2.3. How To Write Javadoc Comments

Javadoc comments added to source code are distinguishable from normal comments by a special comment syntax
(/**). A generator (similar to the weave tool within literate programming) can extract these comments and transform the
corresponding documentation into a variety of output formats, such as HTML, LATEX, or PDF. Most tools also provide
specific tags within comments that influence the format of the documentation produced or the way documentation
pages are linked.

Different types of comments are used to document the different types of identifiers. For example, a class comment
should provide insight on the high-level knowledge of a program, e.g., which services are provided by the class, and
which other classes make use of these services [1]. A method comment, on the other hand, should provide a low-level
understanding of its implementation [1]. Even during early stages of implementation, the Javadoc tool can process pure
stubs (classes with no method bodies), enabling the comment within the stub to explain what future plans hold for the
created identifiers.

When writing comments for the Javadoc tool, there are a number of guideline specifications that need to be followed
to ensure the tool is being used effectively.2

These specifications include details such as:

• Class/interface/field descriptions can omit the subject and simply state the object.

• Method descriptions need to begin with verb phrases.

• Use third person, declarative, rather than second person, prescriptive.

• Do not include any abbreviations when writing source code comments.

2How to Write Doc Comments for the Javadoc Tool, http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
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3. NLP Corpus Generation from Source Code

Before we can analyse Javadoc comments, we need to discuss the transformation of source code and its comments
into a representation format suitable for automated NLP analysis.

3.1. Javadoc Doclets
The Javadoc tool provides both the implementation needed to extract information from the source directory and

the library used to develop custom transformation tools, called Doclets [7]. Doclets provide an interface to the set of
objects that are created as a result of the static source code analysis.

Javadoc’s standard Doclet generates API documentation using the HTML format; while this is convenient for human
consumption [9], automated NLP analysis applications can benefit from a more structured XML format: With HTML,
we would be limited to pre-defined tags such as <p> or <head>, and predefined attributes such as font-size, as well
as a standard HTML structure that encloses information using the pre-defined tags, such as <body> and <table> [10].
For processing in an NLP framework, an XML format where the semantics are encoded in explicit markup is much
more versatile than HTML, as it enables us to: (i) define custom tags and attributes to mark up the information of
the XML elements [11] and (ii) define a well-formed XML structure that is easily processed by NLP applications.
Generating these structured XML documents from Javadoc information is possible by developing a custom Doclet that
uses the Javadoc library.

1 package org.argouml.notation . providers ;
2
3 import java .beans.PropertyChangeListener ;
4 import org.argouml.model.Model;
5 import org.argouml.notation . NotationProvider ;
6
7 /∗∗
8 ∗ This abstract class forms the basis of all Notation providers
9 ∗ for the text shown in the Fig that represents the CallState .

10 ∗ Subclass this for all languages .
11 ∗
12 ∗ @author mvw@tigris.org
13 ∗/
14 public abstract class CallStateNotation extends NotationProvider

Figure 3: An Abstract Class Declaration taken from ArgoUML’s Source Code

The standard Doclet also provides a limited amount of checks that are mainly syntactic in nature. However, more
analyses can potentially be applied on Javadoc comments, measuring factors such as completeness, code/comment
consistency and readability.

3.2. Marking Up Source Code
The Semantic Software Lab Doclet (SSLDoclet)3 [12] enables us to (i) control what information from the source

code will be included in the corpus, and (ii) mark up the information using a schema that NLP applications can easily
process. The Doclet is able to model both the syntactic and semantic information found in Java source code, such as:

• parent/child relationships between generalized and specialized classes;

• the package an interface or abstract class belongs to;

• fields, constructors and methods of a class;

• the types, modifiers (private, public, protected), and constant values of the fields; and

• the return types, parameter list, and thrown exceptions of a method.

3SSLDoclet, http://www.semanticsoftware.info/javadoclet
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1 <Abstract Class Block>
2 <Abstract Class>CallStateNotation</Abstract Class>
3 <Package>org.argouml.notation. providers </Package>
4 <Extends Block>
5 <Extends superclass =Object
6 qualifiedType =org.argouml.notation . NotationProvider
7 superclassFullType =java.lang .Object
8 type=AbstractClass>
9 NotationProvider

10 </Extends>
11 <Extends Comment>
12 A class that implements this abstract class manages a
13 text shown on a diagram. This means it is able to
14 generate text that represents one or more UML objects.
15 And when the user has edited this text , the model may be
16 adapted by parsing the text .
17 Additionally , a help text for the parsing is provided ,
18 so that the user knows the syntax .
19 </Extends Comment>
20 </Extends Block>
21 <Class Comment Block>
22 <Class Comment>
23 This abstract class forms the basis of all Notation
24 providers for the text shown in the Fig that represents
25 the CallState .
26 Subclass this for all languages .
27 </Class Comment>
28 <Author>mvw@tigris.org</Author>
29 </Class Comment Block>

Figure 4: A Section of an NLP Corpus, generated from Source Code using an Abstract Class Declaration

As an example, consider the code in Figure 3, which shows an Abstract Class declaration taken from the open
source project ArgoUML [13]. Figure 4 shows how our Doclet represents the information found in the abstract class
using the <Package> and <Extends> tags to model the package the abstract class belongs to and the superclass that
it extends. An example of how the parameter list of the “intialiseListener” method are modeled using the XML tag
<Parameter> is illustrated in Figure 5.

1 <Method Block>
2 <Method modifier=public visibility =public
3 signature =(java.beans.PropertyChangeListener , java . lang .Object)>
4 initialiseListener </Method>
5 <Method Comment Block>
6 <Method Comment>
7 Initialise the appropriate model change listeners for the given
8 modelelement to the given listener . Overrule this when you need
9 more than listening to all events from the base modelelement.

10 </Method Comment>
11 </Method Comment Block>
12 <Parameter Block>
13 <Parameter fulltype =java.beans.PropertyChangeListener
14 type=PropertyChangeListener>
15 listener </Parameter>
16 <Parameter Comment>the given listener</Parameter Comment>
17 </Parameter Block>
18 <Parameter Block>
19 <Parameter fulltype =java.lang .Object type=Object>
20 modelElement</Parameter>
21 <Parameter Comment>
22 the modelelement that we provide notation for
23 </Parameter Comment>
24 </Parameter Block>
25 </Method Block>

Figure 5: A Section of a Corpus Generated from Javadoc Comments

Both Figure 4 and 5 demonstrate how our Doclet is able to represent more information effectively using XML
attributes, compared to the standard HTML output. For example, we now also know that the parent of the “Call-
StatNotation” superclass is Object, and that the “listener” parameter of the “intialiseListener” method has the type
“PropertyChangeListener”.
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3.3. Marking Up Source Code Comments

Our SSLDoclet is also able to mark up the natural language information found in Javadoc comments, such as
the docComment, block, and in-line tags. Figure 3 also includes an example of a Javadoc comment that includes a
docComment and uses the @author in-line tag. Figure 4 shows how the Javadoc comments are marked up using the
<Extends Comment> tag, which contains the comment belonging to a super class. Additionally, the figure shows how
the class comment belonging to CallStatNotation is represented using the Class Comment and Author XML tags.

The SSLDoclet uses a schema that maintains the relationships found in source code, and represents the information
using a combination of XML tags, attributes and elements. In Figure 6, we show how the relationships found in the
sample source code are modeled. We eliminated the XML elements and attributes for readability purposes.

1 <Abstract Class Block>
2 <Abstract Class/>
3 <Extends Block>
4 <Extends/>
5 <Extends Comment/>
6 </Extends Block>
7 <Class Comment Block>
8 <Class Comment/>
9 <Author/>

10 </Class Comment Block>
11 <Constructors>
12 <Constructor Block>
13 <Constructor/>
14 <Constructor Comment Block>
15 <Constructor Comment/>
16 </Constructor Comment Block>
17 <Parameter Block>
18 <Parameter/>
19 <Parameter Comment/>
20 </Parameter Block>
21 </Constructor Block>
22 </Constructors>
23 ...
24 </Abstract Class Block>

Figure 6: SSLDoclet Schema

The information generated using the SSLDoclet could have been modeled in a number of different ways; however,
it is important to keep in mind that when a corpus is loaded within an NLP framework, the XML tags are typically
interpreted as annotations, the XML elements are interpreted as entities of the annotation they belong to, and finally the
XML attributes are interpreted as features of the annotation.

4. Improving Software Quality through
Automatic Comment Analysis: The JavadocMiner

The goal of our JavadocMiner tool is to enable users to 1) automatically assess the quality of source code comments
and 2) export the in-line documentation and the results returned from this analysis to an ontology. The JavadocMiner is
also capable of giving users recommendations on how a Javadoc comment may be improved based on the “How to
Write Doc Comments for the Javadoc Tool” guidelines and the metrics discussed in this section. These metrics are
grouped into two categories, (i) internal, i.e., natural language (NL) quality only and (ii) code/comment consistency, i.e.,
how well the comments match the described source code segments. A summary of all heuristics is presented in Table 1.

4.1. Internal (NL Quality) Comment Analysis

We first describe the set of heuristics targeting the natural language quality of the in-line documentation itself.

4.1.1. Token, Noun and Verb Count Heuristic (TNVC)
For each Javadoc comment within a Java class, we calculate the number of tokens, noun phrases (NPs) and verb

groups (VGs) the comment contains, based on standard noun and verb phrase chunking. The results are later used by
additional quality assessments, such as SPW and PWS, in order to detect the writing style of a comment.
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Table 1: Summary of Comment Quality Analysis Heuristics

Type Name Scope (I/E) Output

Internal

TNVC Javadoc Comments Number of tokens, nouns and verbs

WPJC Javadoc Comments Number of words

ABB Javadoc Comments Number of abbreviations

FOG Javadoc Comments Fog readability index

FLESCH Javadoc Comments Flesch readability index

KINCAID Javadoc Comments Kincaid readability index

SPW Javadoc Comments Explanation on how the second person writing style may be improved

PWS Javadoc Comments Explanation on how the passive writing style may be improved

Code vs.
Comment

DIR Methods + Method Comments Ratio from 0 to 1 indicating the completeness of a method’s documentation

ANYJ Javadoc Comments Ratio from 0 to 1 indicating the completeness of a class’ documentation

SYNC Methods + Method Comments Boolean (True/False), indicating the sync between the different parts of a
method, and its documentation

ARV Methods + Method Comments Boolean (True/False), indicating whether the comment adds value beyond
what can be understood using the identifier

4.1.2. Words Per Javadoc Comment Heuristic (WPJC)
Originally proposed by [5], the WPJC metric calculates the average number of words found in Javadoc comments.

After applying NLP preprocessing services, such as segmenting the generated documents into sentences and sentences
into tokens, the WPJC measure is in charge of counting the number of words found in each Javadoc comment. As an
average, this number is then divided by the total number of Javadoc comments within a class.

WPJC =
# of Words in a Javadoc Comment

# of Javadoc Comments

4.1.3. Abbreviation Count Heuristic (ABB)
Using a list of abbreviations from a plain text file, the ABB metric is designed to detect and count the number of

abbreviations used within Javadoc comments. Abbreviated strings within the in-line documentation that match the
entities from the list are annotated using features specifying that the string is an abbreviation.

4.1.4. Readability Heuristics (FOG/FLESCH/KINCAID)
In the early twentieth century, linguists conducted a number of studies where people were asked to rank the

readability of text [5]. A number of formulas were implemented that analyse the readability of text [14], for example:

The Fog Index: Developed by Robert Gunning, it indicates the number of years of formal education a reader would
need to understand a block of text. It is defined as:

Fog = 0.4 × (ASL + HW)

Where:
ASL = Average sentence length using number of words.
HW = Number of words with more than two syllables.

Flesch Reading Ease Level: Rates text on a 100-point scale. The higher the score, the easier a text is to read. An
optimal score would range from 60 to 70.4 It is defined as:

Flesch = 206.835 − (1.015 × ASL) − (84.6 × ASW)

4A score between 90–100 would indicate that the block of text could be understood by an 11 year old and would therefore be overly simplified [14].
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Where:
ASL = Average sentence length using number of words.
ASW = Average number of syllables per word.

Flesch-Kincaid Grade Level Score: Translates the 100 point scale of the Flesch Reading Ease Level metric to a U.S.
grade school level.

Flesch-Kincaid = (0.39 × ASL) + (11.8 × ASW) − 15.19

Where:
ASL = Average sentence length using number of words.
ASW = Average number of syllables per word.

These readability formulas are also used by a number of U.S. government agencies, such as the DoD (Department of
Defence) and IRS (Internal Revenue Service), to analyse the readability of their documents [5].

4.1.5. Second Person Writing Style Heuristic (SPW)
When writing Javadoc comments, a third person declarative rather than second person prescriptive writing style

should be used [7]. By analysing the part-of-speech found in Javadoc comment sentences, the SPW metric identifies
comments that use a prescriptive writing style. For each sentence within the Javadoc comment, we iterate through
each token, identifying sequences where a present participle verb is followed by a determiner and finally a proper noun
(e.g., “gets the label”). Once such sequences are found, we compare the stem of the verb (e.g., “get”) with the original
string. Sequences where the verb groups of the n-gram match the stem are identified by the JavadocMiner as using a
2nd person prescriptive writing style. When detecting such cases, the JavadocMiner uses the verb group within the
n-gram being processed to generate recommendations on how the comment may be improved. This is achieved by
converting the verb to its plural form and replacing it with the original verb within the processed n-gram.

4.1.6. Passive Writing Style Heuristic (PWS)
Readability measures, such as Fog and Kincaid, are unable to determine the writing style for a given block of text

(e.g., active vs. passive). Using a rule-based verb group chunker, the JavadocMiner can provide information regarding
the tense, type, and voice of the verb group. The PWS metric detects sentences that use a passive voice writing style.
For sentences within Javadoc comments that have been detected as being passive, the JavadocMiner then provides
explanations to the user on how the Javadoc comment can be be improved by identifying the passive verb group.

4.2. Code/Comment Consistency Analysis

The following heuristics analyse in-line documentation in relation to the source code being documented.

4.2.1. Documentable Item Ratio Heuristic (DIR)
The DIR metric was originally proposed by [5]. For in-line documentation describing a method to be considered

complete, it should document all its aspects. For example, for methods that have a return type, contain parameters,
or throw exceptions, the “@return”, “@parameter” and “@throws” in-line tags must be used. In Figure 7, we show
an example of a Javadoc comment for the parseAssociationEnd method that is completely documented using the
in-line tags.

The result of the DIR metric is the ratio between the parts of a method that should be documented versus the parts
that actually were:

DIR =
Documented Items

Documentable Items
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1 /∗∗ The following method parses the associations of a class diagram.
2 ∗ @return String A String association is returned
3 ∗ @param role The AssociationEnd <em>text</em> describes.
4 ∗ @param text A String on the above format.
5 ∗ @throws ParseException When is detects an error in the role string .
6 ∗ See also ParseError . getErrorOffset ().
7 ∗/
8 protected String parseAssociationEnd(Object role , String text ) throws ParseException

Figure 7: An Example of a Javadoc Method Comment

4.2.2. Any Javadoc Comment Heuristic (ANYJ)
To compute the ratio of identifiers with Javadoc comments compared to the total number of identifiers, we use the

ANYJ metric [5].

ANYJ =
Declarations With Any Javadoc Comment

Total Number of Declarations
ANYJ can be used to determine which classes provide the least amount of documentation and could therefore be most
prone to a newly introduced fault in the source code due to insufficient documentation, which would lead to a failure in
the program (i.e., a bug).

4.2.3. SYNC Heuristics (RSYNC/PSYNC/ESYNC)
The following heuristics detect methods that are documenting return types, parameters and thrown exceptions that

are no longer valid – for example, due to changes in the code not being reflected in the documentation.

RSYNC. The return type of a method is documented using the “@return” in-line tag. The in-line tag must begin with
the correct name of the type being returned, followed by the doc comment explaining the return type. To identify
methods with return types that contain outdated documentation, we perform a string comparison between the value of
the return string indicated in the comment and the actual return type of the method.

PSYNC. When documenting the parameter list of a method, the “@param” in-line tag should begin with the correct
name of the parameter being documented, followed by the doc comment explaining the parameter. The JavadocMiner
identifies method parameters that contain outdated documentation by performing a string comparison between the
value of the parameter name indicated in the comment and the parameter name as it appears in the parameter list.

ESYNC. Documenting exceptions thrown by a method is done using the “@throws” or “@exception” in-line tags.
The documentation must begin with the correct names of the exceptions being returned, followed by the doc comment
explaining the exception itself. Identifying methods that throw exceptions that have no or out of date documentation is
achieved with a string comparison between the value of the exception string indicated in the comment and the actual
exception type thrown by the method.

Figure 8: An Example of a Partially Documented Method

As an example, consider the code shown in Figure 8: Based on the SYNC heuristics, the JavadocMiner would
assign a value of “FALSE” to RSYNC, PSYNC, and ESYNC because: (i) the parameter comment begins with the value
“object”, and not “objectToAccept”, (ii) the return comment begins with the possible value being returned (“true”), and
not the return type itself, and finally (iii) the method throws an exception that is not documented.
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4.2.4. Added Readability Value Heuristic (ARV)
The ARV metric detects documentation that adds no value beyond what can be understood using the API name by

conducting an n-gram comparison between the identifier (e.g., “getsTheLabel”), and the docComment (e.g., “Gets
the label”). After (i) splitting the identifier name using regular expressions designed to process the Java naming
convention [15] for a Class, Method, etc., and (ii) taking the stem of each word found in both the identifier and the
comment, we perform a string comparison between the two. If the strings are an exact match then the JavadocMiner
informs the user on the bad quality of the comment. For the example in Figure 9, the JavadocMiner would assign a

/∗∗ Get the label .
∗ @return String A String association is returned
∗ @param role The AssociationEnd <em>text</em> describes.
∗ @param text A String on the above format.
∗ @throws ParseException When is detects an error in the role string .
∗ See also ParseError . getErrorOffset ().
∗/
protected String getTheLabel(Object role , String text ) throws ParseException

Figure 9: An Example of a Javadoc Comment that adds little or no Value

value of false for the ARV heuristic, meaning the method comment does not add any readability value.
The heuristics described in this section are summarized in Table 1, which also shows which parts of the Javadoc

information is extracted and what each heuristic returns as result of the analysis.

4.3. An Ontology for Source Code Comments

We now discuss how to represent the results from the heuristics described above when running them on a concrete
software system. To capture the rich semantics between the code and its resulting metrics, we export both into an
ontology that can subsequently be queried or linked with other knowledge sources [3].

Ontology models allow for a formal conceptualization of terms and relations that define the vocabulary of a
given domain [16]. Ontologies have become a major tool for developing semantically rich applications. Ontology
models are capable of representing a large amount of information using a small number of axioms (individuals and
relationships) [17]. In terms of knowledge representation, ontologies provide a non-proprietary common language with
open world assumption capabilities.

Figure 10: The Javadoc Ontology

Existing applications of ontologies in software engineering have typically focused on defining a domain of discourse
and their relations. For example, [18] uses ontologies to model the collaborative nature of software engineering. An
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OWL model also enables users to take advantage of visualizations, SPARQL queries, and reasoning services provided
by a Description Logic reasoner such as Racer [19], Pellet [20], or FaCT++ [21].

4.3.1. Ontology Design
A large number of source code and in-line documentation related concepts and relationships exist within Javadoc

generated documentation. Our Javadoc ontology models both source code related concepts, such as Class, Field,
Method and Exception, and in-line documentation related concepts, such as MethodComment, Author and Version.
Figure 10 shows the taxonomic representation of the major concepts modeled in our Javadoc ontology.

Table 2: Concepts and their Relations in the Javadoc Ontology

Object Property Domain Range Description

belongsToPackage Abstract Class t Class t Interface Package The Package a given Interface or Class belongs to

hasConstructor Abstract Class t Class t Interface Constructor Constructors contained within an Interface or Class

hasConstructorComment Constructor Comment The comment that belongs to a Constructor

hasAuthor Comment Author The author of a specific comment

hasVersion Comment Version The version of the comment

Figure 11: Relationships found in Javadoc Comments

Figure 12: Relationships found in Source Code

The various relationships found in an auto-generated Javadoc are represented in our ontology using object proper-
ties [22]; a selected number of these are defined in Table 2. In Figure 11, we show some of the relationships that exist
between the different source code and in-line documentation concepts and in Figure 12 some of the relationships that
exist within the source code itself.
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Figure 13: The NLP Ontology

The domain-specific Javadoc ontology is complemented by a domain-independent NLP ontology, which models
commonly used concepts in language engineering such as Document, Sentence, NP, and VP, as shown in Figure 13.
Table 3 lists the major relationships found in the NLP ontology.

Not included in Tables 2 and 3 are the inverse properties, such as “isAuthorOf” or “isSentenceOf”, which a reasoner
uses to create additional inferences, providing additional ways of querying the ontology.

Table 3: Relationships and Concepts found in the NLP Ontology

Object Property Domain Range Description

hasSentence Document Sentence The sentences found in a Javadoc document

hasNP Sentence NP Noun phrases found in a sentence

hasVP Sentence VP Verb phrases found in a sentence

Finally, relationships can be created between the two ontologies that link their instances together. For example, an
“appearsIn” relationship can be used to link the segments or sentences of a document with the comment they appear in.
These links provide for further queries on the results of the JavadocMiner.

4.3.2. Ontology Population
The ontology created thus far contains only concepts. Before it can be of help to a software engineer, it needs to be

instantiated to obtain a knowledge base. The large number of artefacts involved in this domain makes it infeasible to
create instances manually. Hence, we need to automatically populate [23] the ontology based on the results of the NLP
analysis.

In general, designing an ontology’s taxonomy (T-Box), and populating it using concept and property assertions
(A-Box) [22] is a complicated and time consuming task that requires the expertise of an ontology engineer. Our
JavadocMiner makes use of a GATE component called the OwlExporter [17] that provides an automated, portable, and
simplified means of populating an ontology using the knowledge found in a text. The entities and relationships that are
created by our JavadocMiner NLP application are exported to the Javadoc and NLP ontologies as OWL instances and
relationships, as shown in Figure 14.

5. Implementation

In this section, we discuss how we implemented the quality analysis heuristics presented in the previous section
(cf. Table 1). We begin by describing the system architecture as a whole and then focus on the different components
that make up the JavadocMiner NLP service. We conclude the section with an explanation of how we integrated our
NLP pipeline with the software IDE Eclipse, which allows a programmer to access the results of an NLP analysis
directly during software development.
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Figure 14: The JavadocMiner Pipeline for analysing the Quality of Source Code Comments

5.1. Overall System Architecture

NLP application pipelines are assembled using levels of linguistic analysis, with each level adding information to the
document. An NLP application will typically (i) reuse resources that perform common linguistic tasks and (ii) require
specialized resources specific to an application domain. The Java-based General Architecture for Text Engineering
(GATE) [24] provides a framework for creating language processing software. As part of GATE, a development
environment is also distributed. This development environment is built on top of the GATE Embedded framework and
includes a graphical interface, GATE Developer, for developing and editing language analysis components, as well
as tools for visualizing and evaluating the generated results. A detailed discussion of the GATE framework and its
different components can be found in [24].

In GATE, analysis pipelines are built by assembling individual components, called processing resources (PRs),
which are then sequentially executed on the documents in a corpus. Results from one PR are stored as annotations on
the document, which can be read by subsequent components.

5.2. The JavadocMiner NLP Application

Before the NLP pipeline can process some source code, it is first converted by the SSLDoclet into an XML
representation as discussed in Section 3. The resulting output documents (an example is shown in Figure 15) are then
fed into the JavadocMiner pipeline.

Figure 14 shows the individual components that make up our JavadocMiner pipeline. In yellow are the general
NLP processing resources provided by GATE [24] and in green are the PRs implemented by us.
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1 <Methods>
2 <Method Block>
3 <Method abstract="false" final="false" interface ="false" line ="55" modifier="public"

4 signature="(java.lang.Object)" static ="false" synchronized="false" synthetic ="false"

5 visibility ="public">doesAccept</Method>
6 <Method Comment Block>
7 <Method Comment line="55">A sequence diagram can accept classifiers. It will add them as a new
8 Classifier Role with that classifier as a base. All other accepted figs
9 are added as is .</Method Comment>

10 <Auithor Comment>agauthie@ics.uci.edu</Auithor Comment>
11 <See Comment>org.argouml.uml.diagram.ui.UMLDiagram#doesAccept(java.lang.Object) ∗</See Comment>
12 </Method Comment Block>
13 <Return Block>
14 <Return>void</Return>
15 <Return Comment>true if the diagram can accept the object , else false </Return Comment>
16 </Return Block>
17 <Parameter Block>
18 <Parameter fullType="java.lang.Object" type="Object">objectToAccept</Parameter>
19 </Parameter Block>
20 </Method Block>
21 </Methods>

Figure 15: The ArgoUML Method doesAccept represented using the SSLDoclet

5.2.1. Preprocessing Stage
Using components already provided by GATE, we perform general NLP pre-processing tasks, including tokeniza-

tion, sentence splitting, and part-of-speech (POS) tagging [24].

5.2.2. JavadocMiner PR
We implemented a new GATE component called the JavadocMiner PR, which is responsible for performing the

code/comment consistency analysis on Javadoc comments, such as SYNC and SPW.

1 for (Annotation l : this .getInputAS().get(" Method_Block " ). getContained(
2 t .getStartNode(). getOffset (),
3 t .getEndNode().getOffset())) {
4 if ( this .getInputAS().get("Parameter" ). getContained(
5 t .getStartNode(). getOffset (),
6 t .getEndNode().getOffset ()). size () !=
7 this .getInputAS().get(" Parameter_Comment " ). getContained(
8 t .getStartNode(). getOffset (),
9 t .getEndNode().getOffset ()). size ()) {

10 mFeature.put("PARAMSYNC" , "FALSE" );
11 mFeature.put(" PARAMSYNC_Explanation " ,
12 "The parameter comments and parameters are out of sync, " +
13 "please make sure that each parameter comment begins with " +
14 "the parameter name." );
15 sync = false ;
16 }
17 else {mFeature.put("PARAMSYNC" , "TRUE" );}

Figure 16: A Code Snippet of the SYNC Heuristic

In Figure 16, we show part of the Java implementation of the SYNC heuristic. The PR is designed to process the
XML schema generated using the SSL Doclet. The heuristic starts by examining entities from the “Method Block”
annotation. It then determines if each “Parameter Comment” is associated with a specific “Parameter”. If all parameters
have been correctly documented, the JavadocMiner assigns a value of “TRUE” to “PARAMSYNC”; otherwise,
“PARAMSYNC” is set to “FALSE” and an explanation is generated, which can be used to inform the user regarding the
code/comment inconsistency. In a similar fashion, the SYNC heuristic determines the code/comment consistency of
return comments and exceptions.

The JavadocMiner PR also includes the implementation needed to detect comments that add little or no value over
what a reader can gather from looking at the identifier itself, as defined by the ARV metric, and computes the ratio
between documentable method items vs. the items that have actually been documented (DIR metric).
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5.2.3. ReadabilityMetrics PR
For analyzing the readability of a given document, we implemented an application-independent component that

contains the readability metrics described in the design chapter. The component can be used in any NLP service where
the readability index of a document needs to be measured. The ReadabilityMetrics PR makes use of an existing library5

to calculate the readability index. The ReadabilityMetrics PR also contains the implementation in charge of analyzing
passive vs. active writing style as provided by the PWS heuristic.

1 for (Annotation s : sentAS) {
2 FeatureMap sFeature = Factory.newFeatureMap();
3 AnnotationSet vgAS = new AnnotationSetImpl(
4 this .getInputAS().getContained(s .getStartNode(). getOffset (),
5 s .getEndNode().getOffset ()). get( this .VG));
6
7 for (Annotation v : vgAS) {
8 if (v. getFeatures (). get("voice" ). toString (). compareToIgnoreCase("passive")==0) {
9 sFeature .put(" WritingStyle " , v. getFeatures (). get("voice" ). toString ());

10 sFeature .put("PassiveVG" , this .getDocContent().getContent(
11 v.getStartNode(). getOffset (), v.getEndNode().getOffset ()));
12 sFeature .put(" PassiveExplanation " , "The " + s.getType().toLowerCase() +
13 " has been detected as passive, and can be improved by " +
14 "changing the verb phrase " +
15 this .getDocContent().getContent(
16 v.getStartNode(). getOffset (), v.getEndNode().getOffset ()));
17
18 this . createReadabilityAS ( i , sFeature );
19 }
20 }
21 }

Figure 17: A Code Snippet of the PWS Heuristic

In Figure 17, we show a Java code snippet taken from the PWS module. The heuristic makes use of annotations
created by previous processing resources such as the sentence splitter and verb group chunker. In case a passive writing
style was detected, a suggestion for improvement is generated.

5.2.4. OwlExporter PR
The OwlExporter [17] is the final step in our pipeline. It is in charge of taking the annotations produced by the

JavadocMiner and exporting it to the result ontology. The core idea of our OwlExporter is to take the annotations
generated by an NLP pipeline and provide for a simple means of establishing a mapping between NLP and domain
annotations on one hand and the concepts and relations of an existing NLP and domain-specific ontology on the other
hand.

Using a few simple grammars written in the JAPE language [24] (see Figure 18 for an example), the OwlExporter
is able to translate the annotations of a document as individuals, datatype and object properties of an ontology [22].
The resulting, populated ontology can then be used within any ontology-enabled tool for further querying, reasoning,
visualization, or other processing. The relationships that exist between each of the mentioned entities are also
represented using the OWL models. For example, a class name, its documentation, and the author’s name are all
exported to the Javadoc and NLP ontologies and linked. Figure 19 shows an excerpt of a populated Javadoc ontology.

5.3. End-user Interfaces
As discussed earlier, we also need to bring the results of the quality analysis to the software engineers, which

are generally not familiar with text mining frameworks such as GATE. Towards this end, our implementation (i)
integrates the NLP analysis pipeline into the Eclipse IDE for interactive use and (ii) facilitates the populated ontology
for large-scale querying, reasoning, and further cross-linking with other software artifacts [3].

5.3.1. The Semantic Assistants Eclipse Plug-in
Eclipse is a multi-language software development environment, comprising an IDE and an extensible plug-in

system. We implemented our own Eclipse plug-in called the Semantic Assistants Eclipse Plug-in [25] that acts as a
client sending Web service requests to a Semantic Assistants [26] server (Figure 20).

5Readability Metrics Java Implementation, http://www.representqueens.com/fathom/
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1 Phase: Javadoc OWLExportClass
2 Input : SWDomainClass SWNLPClass
3 Options: control = all
4
5 Rule: owlexportclass rule
6
7 (
8 {SWDomainClass} |
9 {SWNLPClass}

10 )
11 : sw
12 −−>
13 {
14 AnnotationSet as = (gate.AnnotationSet) bindings .get("sw" );
15 Annotation a = (gate.Annotation)as . iterator (). next ();
16
17 a. getFeatures (). put("kind" , "Class" );
18 a. getFeatures (). put(" corefChain " , null );
19
20 if (a.getType().compareToIgnoreCase("SWDomainClass")==0) {
21 outputAS.add(as. firstNode (), as . lastNode (),
22 " OwlExportClassDomain " , a. getFeatures ());
23 }
24 else
25 outputAS.add(as. firstNode (), as . lastNode (),
26 " OwlExportClassNLP " , a. getFeatures ());
27 }

Figure 18: An Example JAPE Grammar Used to Export Domain and NLP Instances to the Ontology

The Semantic Assistants architecture is in charge of (i) invoking the different NLP services requested by the client,
(ii) transporting the documents that need to be analysed to the service, and finally (iii) returning the results of the NLP
service back to the client in the form of annotations.

The Eclipse client then maps the results returned by the analysis to the original documents, and displays the
information to the user. In Figure 21, we show how recommendations made by our JavadocMiner on how a comment
may be improved is displayed by the Semantic Assistants Eclipse plug-in. A software developer can now inspect these

Figure 19: An Excerpt from a populated Javadoc Ontology

16



Tier 1: Clients Tier 4: ResourcesTier 2: Presentation and Interaction Tier 3: Analysis and Retrieval

C
lient S

ide

A
bstraction Layer

P
lugin

E
clipse ID

E

NLP Subsystem

NLP Service Connector

W
eb S

erver

Service Information

Service Invocation
Language Services

JavadocMiner

Language

Service

Descriptions

Figure 20: The JavadocMiner pipeline running within the Semantic Assistants Framework

quality analysis results directly within his code editor, in exactly the same way as he works with source code errors and
warnings.

Figure 21: The Semantic Assistants Eclipse Plug-in

5.3.2. Ontology Application
Exporting the results created by our JavadocMiner application to an ontology enables users to query the asserted

and inferred knowledge of the model. For example, conformance testers can quickly identify the modules within an
application that do not follow organizational standards and thus return low quality scores. In Figure 22, we show the
results of a SPARQL query that returned classes that contained insufficient documentation as detected by the ANYJ
metric. Also returned by the query are the authors that created the Javadoc documentation for the class.

Our approach of representing the source code analysis results in a standardized ontology format also facilitates
further linking with other software knowledge repositories, including versioning systems and bug databases [3].

6. Evaluation

In this section, we discuss how the JavadocMiner was applied on two open source projects for an analysis of
comment quality and their consistency with source code; we then evaluate the results of our study by examining how
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Figure 22: Results of a SPARQL Query on the NLP-Populated Source Code Comment Ontology

the quality of comments evolved between the different versions. In the second part of our evaluation, we correlate the
results returned from our study with the bug statistics for each open source project, and show how the JavadocMiner
can be used to measure the documentation quality of source code.

6.1. Data

We conducted a case study where the JavadocMiner was used to assess the quality of in-line documentation found
in three major releases of the UML modeling tool ArgoUML6 and the IDE Eclipse.7 Three different versions of each
project were checked out manually from the project’s version control repository. By assessing each module separately,
we are able to observe how the quality of documentation evolved over time. In Table 4, we show the versions of the
projects that were part of our quality assessment.

Table 4: Assessed Open Source Project Versions, Release Dates, Lines of Code (LOC), Number of Comments, Identifiers and Bugs

Project Version Release LOC Number of Number of Number of
Date Comments Identifiers Bug Defects

ArgoUML v0.24 02/2007 250,000 6871 13,974 46
ArgoUML v0.26 09/2008 600,000 6875 14,262 54
ArgoUML v0.28.1 08/2009 800,000 7168 14,789 48
Eclipse v3.3.2 06/2007 7,000,000 32,172 158,009 176
Eclipse v3.4.2 06/2008 8,000,000 33,919 163,238 413
Eclipse v3.5.1 06/2009 8,000,000 34,360 165,945 153

6ArgoUML, http://www.ohloh.net/p/argouml/analyses/latest
7Eclipse, http://www.ohloh.net/p/eclipse/analyses/latest
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6.2. Experiments

We split the ArgoUML and Eclipse projects into their three major modules, for ArgoUML: Top Level, View &
Control, and Low Level; and for Eclipse: Plug-in Development Environment (PDE), Equinox, and Java Development
Tools (JDT). The quality of the in-line documentation found in each module was assessed separately for a total of
43,025 identifiers and 20,914 comments from ArgoUML, and 487,192 identifiers and 100,451 comments from Eclipse.
The complete quality assessment process for both open source projects took less than 3 hours. In the second part of our
evaluation, we continued by finding the amount of bug defects that were reported for each version of the modules using
the open source project’s issue tracker system. The Pearson product-moment correlation coefficient measure was then
applied to the data gathered from the quality assessment and issue tracker systems to determine the varying degrees of
correlation between the individual heuristics and bug defects.
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Figure 23: Charts for Code/Comment and Internal (NL Quality) Metrics

6.3. Results and Analysis

Results of our study indicated that the modules that performed best in our quality assessment were the Low Level
module for ArgoUML (Figure 23, left side) and the PDE module for Eclipse (Figure 23, right side). The figure
shows both results from an internal analysis (Kincaid), targeting the quality of the natural language itself (top) and the
code/comment consistency as computed by the ANYJ heuristic (bottom). Looking at ArgoUML, the Kincaid measure
for the View and Control as well as the Low Level modules remained relatively flat, versus the Low Level Module
which continues in an upward direction. This can be interpreted as efforts geared towards improving the documentation
of the project’s core library. The same applies for the ANYJ measure, which indicated that the Low Level Module as
being the most thoroughly documented module.
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In terms of the Eclipse open source project, both the PDE and JDT modules showed increasing readability indexes;
however, as mentioned before, a higher readability index does not necessarily indicate better readability: Based on the
observations made by linguists in the past, an optimal score for the Flesch-Kincaid readability index would range from
8–10 [14]. Readability indexes can also be seen as a measure of text density, using the number of words and syllables
as factors. In terms of the readability index as a measure of text density, a higher index does not necessarily mean more
complex content, but also that the text contained less number of words with a similar number of syllables. Applied
to the context of source code comments, the inline documentation “Gets the ToolTipModule object” would yield a
Kincaid reading grade level of 13, where “This method is in charge of getting the tool tip module”, would yield a value
of 6. Both examples are equally understandable to a developer, with one containing less than half the number of words.
Examining the comments found in the JDT module validated this observation, showing shorter comments as reported
by WPJC, with increased number of syllables and denser comments on average as indicated by Kincaid. The PDE
module showed readability measures between the 8–10 values for two of the three versions and a higher number of
WPJC on average, compared to both the JDT and Equinox modules. For these reasons, we were able to conclude the
PDE module as having the least dense in-line documentation and thoroughly documented source code as indicated by
the ANYJ graph (Figure 23, bottom right).

6.3.1. Quality Analysis
We believe that the reason for the Low Level module (ArgoUML) and the PDE module (Eclipse) outperforming

the rest of the modules in every heuristic is that they are both the base libraries that every other module extends. For
example, Eclipse is a framework that is extended using plug-ins that use the services provided by the PDE API module.

The readability results returned by the JavadocMiner indicate that the Low Level module contained in-line
documentation that is less complicated compared to the View and Control module (Figure 23, top left), yet more
complicated than the in-line documentation found in the Top Level module. The PDE module in Eclipse also returned
similar Kincaid results compared to the other two Eclipse modules (Figure 23, top right).

In terms of the Code/Comment consistency metrics, the Low Level and PDE modules contained the most up-to date
and thoroughly documented source code, compared to the rest of the modules. The Eclipse project is further separated
into API and internal non-API packages, and part of the Eclipse policy states that all API packages must be properly
documented [5].

6.3.2. Comment-Bug Correlation
As part of our efforts to correlate the results of our study with another software engineering artefact, we examined

the amount of bug defects that were reported for each version of the modules for ArgoUML (Figure 24, left) and for
Eclipse (Figure 24, right).
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Figure 24: Charts for Code/Comment and Internal (NL Quality) Metrics

We correlated the quality of comments found in source code with bug defects in order to determine if potential
problem areas can be identified early by analysing the in-line documentation. What we observed was that the modules
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that performed best in our quality assessment also had the least amount of reported defects, and vice versa for the
modules that performed poorly. In order to determine how closely each metric correlated with the number of reported
bug defects, we applied the Pearson product-moment correlation coefficient [27] on the data gathered from the quality
assessment and the number of bug defects for both ArgoUML (Table 5), and Eclipse (Table 6). Also included in the
bottom of each table are the correlation coefficient figures of the merged modules for each project.

Table 5: Pearson Correlation Coefficient Results for ArgoUML
Module ANYJ SYNC ABB FLESCH FOG KINCAID TOKENS WPJC NOUNS VERBS
Top Level 0.99 0.96 -0.98 0.32 0.80 0.74 0.89 0.96 0.98 0.89
View&Control 0.91 0.99 -0.87 0.37 0.77 0.81 0.88 0.86 0.91 0.73
Low Level 0.97 0.92 -0.93 0.31 0.82 0.84 0.84 0.82 0.99 0.88
total 0.99 0.98 -0.94 0.32 0.80 0.79 0.89 0.91 0.98 0.87

The correlation and coefficient results showed that the ANYJ, SYNC, ABB, Tokens, WPJC and Nouns heuristics
strongly correlated with the number of bug defects, whereas the Flesch readability metric was among the least correlated.
Even though Flesch-Kincaid translates the Flesch Reading Ease metric to a U.S. school level grade mathematically,
they are two different types of computations and therefore a difference in the degree of correlation between the two
metrics is possible.

Table 6: Pearson Correlation Coefficient Results for Eclipse
Module ANYJ SYNC ABB FLESCH FOG KINCAID TOKENS WPJC NOUNS VERBS
Equinox 0.98 0.90 -0.89 0.40 0.79 0.94 0.91 0.89 0.93 0.75
PDE 0.97 0.85 -0.83 0.34 0.71 0.82 0.81 0.82 0.90 0.71
JDT 0.95 0.81 -0.85 0.39 0.75 0.87 0.79 0.84 0.95 0.65
total 0.97 0.89 -0.86 0.37 0.77 0.84 0.88 0.86 0.91 0.73

In Figure 25 (top), we show the number of bug defects reported at the level of quality assessments returned by the
ANYJ and ABB metrics, and in Figure 25 (bottom) for the readability and NLP metrics for ArgoUML. The same data
is represented for Eclipse in Figure 26.

The charts illustrate the correlation between each metric and the number of bug defects; with the exception of the
Flesch metric, which we previously determined as being the least correlated.

7. Related Work

In the following, we discuss related work, separately for the three major aspects of our work: Source code as input
for NLP analysis, quality analysis of source code comments, and consistency analysis between code and its natural
language comments.

7.1. Corpus Generation from Source Code

A number of other Doclets exist that can create XML files using Javadoc and information found in source code, such
as the xml-doclet,8 Mavens’ XMLDoclet,9 or the jeldoclet.10 However, when looking at the schema generated by
these Doclets, we observed that the Doclets were not necessarily designed for generating a corpus to be used within
NLP applications: For example, the xml-doclet marks up information using only XML tags and elements and does
not make use of XML attributes to represent information. As mentioned earlier, XML attributes are interpreted by NLP
frameworks as features of an annotation.

A Doclet that generates a schema that closely resembles the SSLDoclet is the jeldoclet. The jeldoclet,
however, does not attempt to differentiate between different types of comments, which reduces the descriptiveness of

8XML-Doclet, http://code.google.com/p/xml-doclet/
9Maven Doclet, http://maven.apache.org/maven-1.x/

10jeldoclet, http://jeldoclet.sourceforge.net/
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Figure 25: Code/Comment Consistency and NL Quality Metrics vs. Bugs – ArgoUML

the corpus. The jeldoclet also does not capture the information provided by Javadoc when a certain class implements
or extends another class, as shown in Figure 4.

The source data being represented and the output format is the same for all XML generating Doclets; and the XML
documents generated using these Doclets can be loaded within any NLP framework. But the information mark-up
approach will not only drastically affect the number of annotations, features and entities that will be created but as a
consequence also the NLP resources required for processing that information: Having the most number of annotations,
features or entities as result of how the information is marked up within an XML document is not necessarily beneficial.
Providing a schema that enables NLP frameworks to differentiate between an annotation, a feature, and an entity is
important when generating an XML document that is to be used as a corpus. None of the existing Doclets that we
examined were capable of doing so. For example, since the xml-doclet marks up all the information using XML tags
only, no features are created when the document is loaded within an NLP framework and the number of annotations
would exceed that of the SSLDoclet for the same amount of information. This will actually have a negative impact on
the amount of work needed by the language engineers to make use of the generated corpus.

To conclude, even though there exist a number of XML generating Doclets that can be downloaded from the net, we
feel that our SSLDoclet differs from the rest due to its ability to generate XML output using a schema that is optimized
for further NLP processing, which is an application scenario not targeted by existing efforts.

7.2. Quality Analysis of In-Line Documentation

There has been effort in the past that focused on analysing source code comments, for example in [28] human
annotators were used to rate excerpts from Jasper Reports, Hibernate and jFreeChart as being either More Readable,
Neutral or Less Readable. The authors developed a “Readability Model” that consists of a set of features such as

22



 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 20  40  60  80  100  120  140  160  180  200  220

M
et

ric

Bugs

Code/Comment Consistency Metrics (ANYJ and SYNC) - Eclipse

ANYJ
SYNC

 0

 1

 2

 3

 4

 5

 20  40  60  80  100  120  140  160  180  200  220

M
et

ric

Bugs

ABB Trend - Eclipse

ABB

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 20  40  60  80  100  120  140  160  180  200  220

M
et

ric

Bugs

Internal Metrics (Flesch, Fog and Kincaid) - Eclipse

Flesch
Fog

Kincaid

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 20  40  60  80  100  120  140  160  180  200  220

M
et

ric

Bugs

Internal Metrics (Tokens, WPJC, Nouns, Verbs) - Eclipse

Tokens
WPJC
Nouns
Verbs

Figure 26: Code/Comment Consistency and NL Quality Metrics vs. Bugs – Eclipse

the average and/or the maximum 1) line length in characters; 2) identifier length; 3) identifiers; and 4) comments
represented using vectors. The heuristics used in the study were mostly quantitative in nature and based their readability
scale on the length of the terms used, and not necessarily the complexity of the text as a whole. The authors also made
no attempt to measure how up-to-date the comments were with the source code they were explaining.

The authors of [2] manually studied approximately 1000 comments from the latest versions of Linux, FreeBSD and
OpenSolaris. Part of their study was to see how comments can be used in developing a new breed of bug detecting
tool, or how comments that use cross-referencing can be used by editors to increase a programmer’s productivity by
decreasing navigation time. The work attempts to answer questions such as 1) what is written in comments; 2) whom
are the comments written for or written by; 3) where are the comments located; and 4) when were the comments written.
Results from the study showed that 22.1% of the analysed comments clarify the usage and meaning of integers, 16.8%
of the examined comments explain implementation, for example, which function is responsible for filling a specific
variable, and 5.6% of source code comments describe code evolution such as cloned code, deprecated code and TODOs.
The purpose of their study was to classify, rather than assess, the different types of in-line documentation found in
software artifacts. The authors also made no attempt to automate the process, nor was there any major correlations
made with other software engineering artefacts.

The only work we are aware of that focused on automatically analysing API documentation generated by Javadoc
is [5]. The authors implemented a tool called Quasoledo that measures the quality of documentation with respect to its
completeness, quantity and readability. Here, we extended the works of [5] by introducing new quality assessment
metrics. We also analysed each module of a software project separately, allowing us to observe correlations between
the quality of in-line documentation and bug defects. Both of the efforts mentioned above focus mostly on the evolution
of in-line documentation and whether they co-change with source code, and not necessarily on the quality assessment
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of in-line documentation. None of the efforts mentioned in this section put nearly as much emphasis on correlating the
quality of in-line documentation with reported bug defects as was done in our study.

7.3. Code/Comment Consistency Analysis

Automatically analysing comments written in natural language to detect code-comment inconsistencies was the
focus of [29]. The authors explain that such inconsistencies may be viewed as an indication of either bugs or
bad comments. The authors implemented a tool called iComment that 1) applies Part of Speech Tagging (POS) on
comments, 2) uses statistics to determine the most predominant terms of a comment, 3) uses Decision Tree Learning to
generate models from a small set of manually annotated comments, and 4) uses program analysis techniques to detect
inconsistencies between code and comments. The tool was applied on four large open source software projects: Linux,
Mozilla, Wine and Apache, and detected 60 comment-code inconsistencies, 33 new bugs and 27 bad comments.

Finding regularities in source code and source code comments using Zipf’s Law [30] was the focus of [31] and
[32]. A “lexical analyzer” used to estimate the length of software was implemented in [31]. The analyzer applies
“Software Science Estimation”, “Magnitude of Relative Error” and Zipf’s Law on source code and comments. The
authors applied the tool on Jena, Protégé, Ant and nine other software systems. Results from the study include that the
most frequently occurring keyword used in Jakarta Tomcat is Public. The authors also argued that because String was
the most frequent identifier for Jena, it could act as an indication for needed optimizations. The authors also found that
the identifiers commonly used by different developers were org, i, e, name, etc. In order to observe the evolution of a
single software project, the “lexical analyzer” was applied to multiple versions of Tomcat. The authors observed that
Zipf’s Law also held for the multiple versions with no major differences in the rank of words used in the lexicon.

The work described in [33] defines a Source Code Vocabulary (SV) as being the union of Class Name, Attribute
Name, Function Name, Parameter Name and Comment Vocabularies. The work uses a combination of existing tools
like diff to answer questions; such as how the vocabularies evolve over time, what type of relationships exist between
the individual vocabularies, are new identifiers introducing new terms, and finally what do the most frequent terms
refer to.

None of the work mentioned in this section attempted to analyse the quality of Javadoc comments used to generate
API documentation. Source code comments that describe a given implementation within a method body mainly come
in contact with the developers and maintainers of a software project. However, Javadoc API documentation also comes
in contact with other stakeholders, such as managers and conformance testers.

8. Conclusions and Future Work

In this paper, we discussed the challenges facing the software engineering domain when attempting to manage the
large amount of documentation written in natural language. We presented an approach that automatically assesses
the quality of documentation found in software comments using our JavadocMiner system. We also showed how the
JavadocMiner can be used to identify the modules that may contain a higher number of bug defects due to poor and out
dated in-line documentation. Regardless of the current trends in software engineering and the paradigm shift from
documentation to development, we have shown how potential problem areas can be minimized by maintaining source
code that is sufficiently documented using good quality up-to-date source code comments.
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