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ABSTRACT
Semantic technologies, including natural language process-
ing (NLP), ontologies, semantic web services and web-based
collaboration tools, promise to support users in dealing with
complex data, thereby facilitating knowledge-intensive tasks.
An ongoing challenge is to select the appropriate technolo-
gies and combine them in a coherent system that brings
measurable improvements to the users. We present our on-
going development of a semantic infrastructure in support of
genomics-based lignocellulose research. Part of this effort is
the automated curation of knowledge from information on
enzymes from fungi that is available in the literature and
genome resources. Fungi naturally break down lignocellulose,
hence the identification and characterization of the enzymes
that they use in lignocellulose hydrolysis is an important part
in research and development of biomass-derived products and
fuels. Working close to the biology researchers who manually
curate the existing literature, we developed ontological NLP
pipelines integrated in a Web-based interface to help them in
two main tasks: mining the literature for relevant informa-
tion, and at the same time providing rich and semantically
linked information.
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1. INTRODUCTION
Since the early decades of the 20th century, when the in-

ternal combustion engine rapidly replaced the steam engine,
transport is almost totally dependent on fossil fuels. As the
amount of available petroleum decreases, producing sustain-
able liquid fuels with low environmental impact is one of the
major technological challenges the world is facing today. In-
dustrialized and developing countries consider biofuels, fuels
produced from biomass, as a promising alternative to fossil
fuels.

There are many advantages of using biofuels in terms of
economic, environmental and energy security impacts [8]:
easily available from biomass sources, biofuels can be sustain-
able and contribute to reduce the carbon dioxide emissions.
Most of the biofuels used today are produced from the fer-
mentation of corn starch which requires substantial input of
water, fertilizer and energy. According to the United Nations
Environment Programme [6], the global use of biofuels will
nearly double during the next ten years. Hence, improv-
ing efficiency and sustainability of the biofuels production
is of great interest. Underutilized agricultural and forestry
residues, such as agricultural waste, wood chips from pulp



Table 1: Semantic entities, applicable level (sentence, S or word(s), W ), definitions and examples

Semantic Entity Level Definition Example

ActivityAssayConditions S conditions at which the activity assay is carried out disodium hydrogen phosphate, citric acid, pH 4.0,
37�

Assay W name of the experimental assay Dinitrosalicylic Acid Method (Somogyi-Nelson)

Enzyme W enzyme name alpha-galactosidase

Gene W gene name mel36F

Glycosylation S enzymatic process attaching glycans to organic
molecules

N-glycosylation

Host W organism used to produce the recombinant protein Escherichia coli

KineticAssayConditions S buffer, pH, temp. for the kinetic parameters determi-
nation

0.1M (disodium hydrogen phosphate, citric acid),
pH 4.0, 37�

Organism W organism name Gibberella sp.

pH S pH mentions The enzyme retained greater than 90% of its origi-
nal activity between pH 2.0 and 7.0 at room tem-
perature for 3h.

ProductAnalysis S products formed from the enzyme reaction and identi-
fication method

HPLC, glucose, galactose

SpecificActivity S specific activity of the enzyme on the substrate 11.9U/mg

Strain W strain name F75

Substrate W substrate name stachyose

SubstrateSpecificity S substrate specificity mentions The Endogluccanase from Pyrococcus furiosus had
highest activity on cellopentaose.

Temperature S temperature mentions The enzyme stability at different pH values was
measured by the residual activity after the enzyme
was incubated at 25� for 3h.

and paper production and all the “green” garbage, are com-
posed of lignocellulose, which is the most abundant organic
material on earth.

The sustainable conversion of lignocellulose into fermen-
table sugars for biofuel production requires the use of biologi-
cal catalysts, called enzymes. Commercial biomass-degrading
enzymes that are currently available are not efficient in lig-
nocellulose degradation. Therefore, in the current race for
replacing petroleum based fuels with renewable biofuels, dis-
covering efficient enzymes for the cellulose degradation is
a key challenge. In this context, researchers who aim to
identify, analyze and develop these specific enzymes need to
extract and interpret valuable and relevant knowledge from
the huge amount of documents that are available in multiple,
ever-growing repositories.

The largest knowledge source available to biological re-
searchers is the PubMed bibliographic database [19], provided
by the US National Center of Biotechnology Information,
which contains more than 19 million citations from more
than 21000 life science journals. PubMed is linked to other
databases, like Entrez Genome, which provides access to
genomic sequences, and BRENDA, The Comprehensive En-
zyme Information System [20], which is the main collection
of enzyme functional data available to the scientific commu-
nity. A biology researcher querying PubMed using keywords
collects an often long list of potentially relevant papers. The
way to analyze this collection is reading all the abstracts and
sometimes the full text papers: this task is time consuming
and significant knowledge can be easily missed.

The work-in-progress we present in this paper focuses on
the automatic extraction of knowledge from the massive
amount of information on fungal enzymes available from the
literature. In our approach, NLP pipelines brokered through

web services support the extraction of relevant mentions and
their enrichment with additional features.

This paper is organized as follows. The next section in-
troduces related work, followed by background information
in Section 3. Section 4 describes the architecture of the pro-
posed system and presents the implementation of some of the
components which support the curation through NLP Web
services. Finally, Section 5 presents the corpus we are build-
ing, the annotation process and reports on the preliminary
results.

2. RELATED WORK
To address the above mentioned challenges, NLP and Se-

mantic Web approaches are increasingly adopted in biomed-
ical research [1, 2, 21]. During the last decade, several
systems combining text mining and semantic processing have
been developed to help life sciences researchers in extracting
knowledge from the literature:

Textpresso [14] enables the user to search for categories of
biological concepts and classes relating two objects and/or
keywords within an entire literature set;

GoPubMed [9] supports the arrangement of the abstracts
returned from a PubMed query;

iHOP [12] converts the information in PubMed into one
navigable resource by using genes and proteins as hyperlinks
between sentences and abstracts;

BioRAT [3] extracts biological information from full-length
papers;

Bio-Jigsaw [11] is a visual analytics system highlighting
connections between biological entities or concepts grounded
in the biomedical literature;

MutationMiner [24], based on a GATE pipeline [5, 7], au-
tomates the extraction of mutations and textual annotations



curators

experimenters

articles

browser
curated
database

external
databases

Linked Data

NLP methods

semantic
representation

biology 
researchers

Figure 1: Integrating Semantic Support in Curation, Analysis, and Retrieval

describing the impacts of mutations on protein properties
from full text scientific literature;

and Reflect [18] is a Firefox plugin which tags gene, protein
and small molecule names in any web page.

3. BACKGROUND
Before we describe our overall architecture and the text

mining pipelines, we briefly introduce the user groups in-
volved, the semantic entities we analyse and the resources
we use.

3.1 User Groups
The identification and the development of effective fungal

enzyme cocktails are key elements of the biorefinery indus-
try. In this context, the manual curation of fungal genes
encoding lignocellulose-active enzymes provides the thorough
knowledge necessary to facilitate research and experiments.
Researchers involved in this curation are building sharable
resources, usually by filling dedicated databases containing
the extracted knowledge from the curated literature.

The users of our system are filling and using the my-
coCLAP database1 [15], which is a searchable database of
fungal genes encoding lignocellulose-active proteins that have
been biochemically characterized. The curators are therefore
the first user group of our system. The biology researchers
who make decision about the experiments to conduct and
the experimenters executing them represent two further user
groups. They are mainly interested in the ability of combin-
ing multiple semantic queries to the curated data, thereby
semantically integrating the various knowledge resources.

3.2 Semantic Entities
The system we are developing has to support the manual

curation process; therefore, the semantic entities have been
defined by the curators according to the information they
need to store in the mycoCLAP database.

Entities include information that are of particular inter-
est for the researchers, such as organisms, enzymes, assays,
genes, kinetic properties, substrates, and environmental con-

1mycoCLAP: http://cubique.fungalgenomics.ca/mycoCLAP/

ditions. The list of the semantic entities along with the level
they apply (sentence or word level), their definition and an
instance example is provided in Table 1.

About half of these entities are detected at the word level
(e.g., enzyme or organism names) and the other half consists
of contextual properties captured at the sentence level (e.g.,
pH and temperature contexts). The entity set was built
in the perspective of providing instances of the ontological
representation of the domain knowledge. The enzyme names
are sought as well as the names of their source organisms
with strains. The enzymes involved in the lignocellulose
degradation have specific biochemical properties, such as
optimal temperature and pH, temperature and pH stabil-
ity, specific activity, substrate specificities as well as kinetic
parameters. These experimentally determined properties de-
scribe the enzyme’s function and nature. Their mentions are
captured from the literature along with the laboratory meth-
ods (assay) used and the experimental conditions (activity
and kinetic assay conditions). In addition to these properties,
the extraction of mentions describing the enzymatic process
(glycosylation) and the products formed (product analysis)
is performed to finalize the knowledge of the reaction.

3.3 Semantic Resources
In terms of knowledge sources, the system relies on exter-

nal and internal resources and ontologies. The Taxonomy
database2 [10] from NCBI is used for initializing the NLP
resources supporting organism recognition. BRENDA3 [20]
provides the enzyme knowledge along with SwissProt/Uni-
ProtKB4 [22]. References to the original sources are inte-
grated into the curated data, which allows us to automat-
ically create links using standard Linked Data techniques:
e.g., links from an organism mention in a research paper to
its corresponding entry in the NCBI Taxonomy database or
from an enzyme name to its EC number in BRENDA.

2NCBI Taxonomy: http://www.ncbi.nlm.nih.gov/Taxonomy/
3BRENDA: http://www.brenda-enzymes.org
4UniProtKB: http://www.uniprot.org/



Figure 2: Organism ontology
Figure 3: Enzyme ontology

4. SYSTEM DESIGN
In this section, we provide an overview of our system ar-

chitecture, the semantic resources we deployed, and the text
mining pipelines we developed.

4.1 System Architecture
With the different user groups and their diverging require-

ments, as well as the existing and continuously updated
project infrastructure, we needed to find solutions for in-
crementally adding semantic support without disrupting
day-to-day work. Our solution deploys a loosely-coupled,
service-oriented architecture that provides semantic services
through existing and new clients.

To connect the individual services and their results, we
rely on standard semantic data formats, like OWL and RDF,
which provide both loose coupling and semantic integration,
as new data can be browsed and queried as soon as it is
added to the framework (Figure 1). The use of the Semantic
Assistants architecture [23] allows us to provide semantic
analysis services directly within desktop applications, by
leveraging standard SOAP web services and OWL service
descriptions.

4.2 Ontologies
To facilitate semantic discovery, linking and querying the

domain concepts across literature and databases, the entities
are modeled in OWL ontologies, which are automatically
populated from documents.

The system presented in this article makes use of two
ontologies. Figure 2 shows the main entities in the organism
ontology and Figure 3 depicts our custom built enzyme
ontology, representing a subset of BRENDA’s ontology. The
ontologies are used both during the text mining process and
for querying the extracted information [24].

4.3 Text Mining Pipelines
Our text mining pipelines are based on the General Archi-

tecture for Text Engineering (GATE) [7]. All documents first
undergo basic preprocessing steps using off-the-shelf GATE
components. Custom pipelines then extract the semantic
entities mentioned above and populate the OWL ontologies
using the OwlExporter [25] component. The same pipeline

can be run for automatic (batch) ontology population, embed-
ded in Teamware (described below) for manual annotation,
or brokered to desktop clients through Web services for liter-
ature mining and database curation. The general workflow
of the pipeline is depicted in Figure 4.

4.3.1 Preprocessing
The processing resources (PRs) composing the first part

of the system pipeline are generic and independent from the
domain. Some of these resources are based on standard com-
ponents shipped with the GATE distribution. In particular,
the JAPE language allows to generate finite-state language
transducers that are processing annotation graphs over doc-
uments. After initializing the document, the LigatureFinder
PR finds and replaces all ligatures, like fi, ff or fl, with their
individual characters, thereby facilitating gazetteer-based
analysis. The next PR is the ANNIE English Tokenizer,
which splits the text into very simple tokens, such as num-
bers, punctuation characters and words of different types.
Finally, the ANNIE Sentence Splitter segments the text into
sentences by means of a cascade of finite-state transducers
and the Hepple part-of-speech tagger that is included with
GATE adds POS tags to each token.

4.3.2 Organism Recognition
The organism tagging and extraction relies on the Or-

ganismTagger system.5 The OrganismTagger is a hybrid
rule-based/machine-learning system that extracts organism
mentions from the biomedical literature, normalizes them to
their scientific name, and provides grounding to the NCBI
Taxonomy database [16].

The OrganismTagger also comes in form of GATE pipeline,
which can be easily integrated into our system. It integrates
the NCBI Taxonomy database, which is automatically trans-
formed into NLP resources, thereby ensuring the system
stays up-to-date with the NCBI database. Additionally, the
organism ontology (Figure 2) formally describes the linguistic
structure of organism entities at different levels of the taxo-
nomic hierarchy [16]. The OrganismTagger pipeline provides
the flexibility of annotating the species of particular interest

5The open-source OrganismTagger system, available at
http://www.semanticsoftware.info/organism-tagger
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Figure 4: Natural Language Processing Workflow

to bio-engineers on different corpora, by optionally including
detection of common names, acronyms, and strains.

4.3.3 Enzyme Recognition
Despite the standards published by the Enzyme Commis-

sion [13], enzymes are often described by the authors under
various formats, from their ‘Recommended Name’ to different
synonyms or abbreviations. Our enzyme recognition process
is rule-based: Gazetteer and mapping lists are automati-
cally extracted from the BRENDA database, in addition to
a mapping list of SwissProt identifiers extracted from the
SwissProt database.

An enzyme-specific text tokenization, along with grammar
rules written in the JAPE language, analyses tokens with
the -ase and -ases enzyme suffixes. The gazetteers allow to
find the enzyme mentions in the documents by applying a
pattern-matching approach.

Some abbreviated forms of enzyme names are not found
during the pattern matching step, usually because these
forms are created by the authors. The following sentence:6

The extracellular endoglucanase (EG) was purified
to homogeneity from the culture supernatant by
ethanol precipitation (75%, v/v), CM Bio-Gel A
column chromatography, and Bio-Gel A-0.5m gel
filtration. The purified EG (specific activity 43.33
U/mg protein) was a monomeric protein with a
molecular weight of 27 000.

shows the example of the EG abbreviation for endoglucanase,
which is not reported in BRENDA. Such abbreviations are
meaningful only within the context of a single document.
Therefore, our pipeline contains grammar rules identifying
these author’s abbreviations and performing coreference res-
olution on each document.

The mapping lists link up the enzyme mentions found
in the document and the external resources. Through this

6Excerpt of: Badal C. Saha, “Production, purifica-
tion and properties of endoglucanase from a newly
isolated strain of Mucor circinelloides”, 2004, doi
10.1016/j.procbio.2003.09.013

grounding step, the system provides the user with the en-
zymes’ Recommended Names, Systematic Names, EC Num-
bers, SwissProt Identifiers and the URL of the related Web
pages on the BRENDA website.

4.3.4 Temperature and pH Contexts
Temperature and pH mentions are involved in several

biochemical contexts, like the temperature and pH dependen-
ce/stability or the description of the activity and kinetic assay
conditions. Examples are given in the following sentences:6

Temperature: The purified enzyme exhibited
maximum activity at 55�, with 84% relative ac-
tivity at 60� and 29% activity at 70� under the
assay conditions used.

pH: The enzyme displayed an optimum activity
at pH 5.0 and retained 80% activity at pH 3.0
and also at pH 8.0.

Our GATE pipeline contains PRs based on JAPE rules
and gazetteer lists of specific vocabulary that enable the
detection of these key mentions at the sentence level.

4.3.5 Other entities
The detection of the other entities mentioned in Table 1 is

currently implemented through gazetteer lists and grammar
rules implemented in JAPE; with the exception of the strain
mentions, which are detected by the strain feature provided
by the OrganismTagger pipeline.

4.4 System Output and User Interfaces
The system output supports two different tasks: the man-

ual annotation of reference papers needed for evaluation
purpose and the database curation manually performed by
the biologists. In the context of manual annotation, the
original papers are enriched with the system output added
as pre-annotations before being submitted to the human
annotators. In the context of database curation, all text
mining pipelines are brokered as NLP Web services through
the Semantic Assistants framework [23]. Users can access



Figure 5: Text mining results displayed in Firefox through the Semantic Assistants Plug-In

these services from their desktop through client plug-ins for
common tools, such as the Firefox Web browser (Figure 5) or
the OpenOffice word processor. This provides the biologists
using our system with the ability to quickly invoke semantic
analysis services on scientific documents they browse online
or edit in their text processor, without having to switch to
an external text mining application.

External resources can be accessed from the user interfaces;
the system output provides direct links to the relevant web
pages, e.g., URLs of the Web pages related to the detected
enzymes on the BRENDA web site or the found organisms
on the NCBI Taxonomy web site.

5. EVALUATION AND RESULTS
In this section, we first discuss the development of the

gold standard corpus and present preliminary results of our
system.

5.1 Manual Annotation Process
For the intrinsic evaluation of our NLP pipelines, we are

building a gold standard corpus of freely accessible full-
text articles. These are manually annotated through GATE
Teamware [4], a Web-based management platform for collab-
orative annotation and curation.

The tool reports on project status, annotator activity and
statistics. The annotator’s interface (see Figure 6) allows
the curator to view, add and edit text annotations that are
either manually created using the Teamware interface or
pre-annotated. We make use of that ability by providing the
annotators with documents we pre-annotate with our NLP
pipelines throughout its development.

The annotation team consists of four biology researchers.
The researcher in charge of the curation task and an annota-
tor having a strong background in fungal literature curation
are considered as expert annotators. The inter-annotator
agreement between them is over 80% (F-measure), hence
their annotation sets are always defined as the most reliable
sets during the adjudication process.

5.2 Corpus

Figure 6: Teamware Annotator GUI

The corpus is composed of freely accessible full text arti-
cles containing critical knowledge and technical details the
biology researchers aim to store in the mycoCLAP database
specifically designed for their needs. The papers are related
to a class of enzymes, among them the glycoside hydrolases,
the lipases and the peroxidases. Glycoside hydrolase papers
and lipase papers each represent 40% of the articles, whereas
20% are related to peroxidases. The current gold standard
corpus is composed of ten full text papers that have been
manually annotated by four biologists each.

At the word level, the two most common entities are
enzymes and organisms, while the most common at the
sentence level are pH and temperature. Table 2 shows these
entities and their counts of occurrence in the current gold
standard corpus. The goal for the current annotation task
is to include fifty manually annotated papers in the gold
standard corpus. This corpus will be available on demand.

5.3 Results
The performance of our text mining pipelines is evaluated

in terms of precision, recall and F-measure. Here, the refer-
ence is provided by the gold standard corpus. Precision is
defined as the number of correct tags hypothesized by the
system divided by the total number of hypothesized tags.



Table 2: Entities and their counts in the current gold
standard corpus

Entity Counts

Enzyme 1493

Organism 984

pH 110

Temperature 115

Recall is defined as the number of correct tags hypothesized
by the system divided by the total number of reference tags.
The F-measure is the harmonic mean of precision and recall.
For the ‘strict’ evaluation, we considers all partially correct
responses as incorrect, while ‘lenient’ considers all partially
correct (overlapping) responses as correct.

In this evaluation, we focus on the four most common
entities (Enzyme, Organism, pH and Temperature) in our
currently annotated corpus. The results of the text mining
pipelines are shown in Table 3.

Table 3: Text Mining pipelines results on the gold
standard corpus in terms of recall (R), precision (P)
and F-measure (F)

Strict Lenient

R P F R P F

Enzyme 0.74 0.65 0.70 0.88 0.77 0.82

Organism 0.87 0.88 0.87 0.91 0.92 0.91

pH 0.74 0.76 0.75 0.95 0.99 0.97

Temperature 0.64 0.67 0.65 0.90 0.93 0.91

5.4 Discussion
The OrganismTagger performance has previously been

evaluated on two corpora, where it showed a precision of
95%–99%, a recall of 94%–97%, and a grounding accuracy
of 97.4%–97.5% [16]. Since its result here are lower, we
examined the error cases in more detail.

The manual annotation of organisms highlights all the
textual mentions referring to an organism as indirect refer-
ences, non-standard names (e.g., non-binomial names) or
generic mentions. In some cases, correct results from the
OrganismTagger were not manually annotated, leading to
false positives. The following common sentence:

Soluble protein was determined according to the
method of Lowry et al. (1951) using bovine serum
albumin as standard.

shows an example of such a case where the OrganismTagger
correctly annotates bovine as an organism, whereas the expert
annotators considered bovine serum albumin as a stand-alone
expression.

In some other cases, human annotations are not detected by
the OrganismTagger. For example, Trichoderma viridie and
M. Incrasata or cellulolytic fungi7 were manually annotated
as organisms by the experts. These mentions are not detected

7Examples from: Badal C. Saha, “Production, purifi-
cation and properties of endoglucanase from a newly
isolated strain of Mucor circinelloides”, 2004, doi
10.1016/j.procbio.2003.09.013

by the OrganismTagger. In the first two cases, the cause
is a spelling difference between the names of the organisms
reported in the NCBI Taxonomy database and their mention
in the article. In the last case, the annotation of a generic
organism mention that is relevant within the context of our
project is not an objective of the OrganismTagger system,
which is designed to provide normalization with scientific
names and grounding to the NCBI Taxonomy database.

Consequently, the results obtained by our pipeline on the
organism recognition are lower than the published results
of the OrganismTagger system. The text mining pipeline
supporting our system needs to be enhanced in its ability to
capture generic organism mentions and to discard stand-alone
expressions containing organism names.

The results obtained on Temperature and pH sentence
detection are much better in the lenient evaluation than the
strict because of sentence splitter mistakes.

The enzyme recognition pipeline provides state-of-the-art
performance. However, wrong detection of abbreviations
and acronyms represent 92% of the false negatives found by
our pipeline. Further work is needed to reduce this amount
by improving the co-reference resolution with approaches as
described in [17] and external resources, such as Allie8 [26].

6. CONCLUSIONS
We presented our ongoing development of a semantic infras-

tructure for enzyme data management. As the first system
specifically designed for lignocellulolytic enzymes research, it
targets the automatic extraction of knowledge on fungal en-
zymes from the research literature. The proposed approach
is based on text mining pipelines combined with ontological
resources. Preliminary experiments show state-of-the-art re-
sults. Improving the consistency of the extracted knowledge
by increasing the use of ontologies is one of the next goals
for our system. Therefore, a key objective is the popula-
tion of the overall ontology of the domain knowledge and its
publication in Linked Data format.

The gold standard corpus of manually annotated papers
will be made available, as well as the presented system.

The accessibility of the services through the Semantic
Assistants framework allows the users to mine the semanti-
cally annotated literature from their desktop. Future work
is needed to enable the interaction between selected users
(e.g., curators) and the presented system in terms of data
validation and knowledge acquisition.

In future work, we will further deploy our text mining
pipelines to assess the quality of existing manually curated
data in the databases. Measuring the overall impact of the
semantic system on the scientific discovery workflow will be
the target of an extrinsic study.
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