
The Durm German Lemmatizer

Praharshana Perera and René Witte

Universität Karlsruhe
Institut für Programmstrukturen und Datenorganisation (IPD)

Karlsruhe, Germany
witte@ipd.uka.de

May 28, 2006

Contents

1 The Durm Lemmatizer 5
1.1 Overview . 5
1.2 Setup . 6

2 German Case Tagger 9
2.1 Overview . 9
2.2 Usage . 9

2.2.1 Initialization Paramaters . 9
2.2.2 Runtime parameters . 9
2.2.3 Output Annotations . 10

2.3 Implementation notes . 10
2.3.1 Probability Files . 10

3 German POS-based Number Tagger 13
3.1 Overview . 13
3.2 Usage . 13

3.2.1 Runtime parameters . 13
3.2.2 Output Annotations . 13

3.3 Implementation notes . 13

4 German Morphological Analyzer 15
4.1 Overview . 15
4.2 Usage . 15

4.2.1 Runtime parameters . 15
4.2.2 Output Annotations . 15

4.3 Implementation notes . 16

5 German Lemmatizer 17
5.1 Overview . 17
5.2 Durm Lexicon . 17

5.2.1 Evolving the Lexicon . 18
5.2.2 Manual Correction of Entries . 19

5.3 Usage . 19
5.3.1 Runtime parameters . 19
5.3.2 Output Annotations . 19

5.4 Implementation notes . 19

About this document

This document contains documentation for the Durm German Lemmatization system. You
can get the latest version from http://www.ipd.uka.de/˜durm/tm/lemma/ .

3

http://www.ipd.uka.de/~durm/tm/lemma/

Contents

Acknowledgments

Development of the German Lemmatizer has been supported by the German research foun-
dation (DFG) within the project ”Entstehungswissen” (LO296/18-1). The TIGER Treebank
(Version 2) has been used for training and evaluation of the Case Tagger.

4

1 The Durm Lemmatizer
The Durm Lemmatization System performs morphological analysis and lemmatization for
German nouns.

Figure 1.1: Annotations generated by the Durm Lemmatizer running in the GATE environ-
ment

1.1 Overview

The Durm Lemmatization system consists of a number of GATE components and resources,
which have to be used within the GATE (http://gate.ac.uk/) architecture. It includes the
following components to perform morphological analysis and lemmatization:

• The Case Tagger, which adds case information (Nominativ, Genitiv, Dativ, Akkusativ)
to nouns;

• The POS-based Number Tagger, which adds number information (singular, plural);

5

http://gate.ac.uk/

1 The Durm Lemmatizer

• The Morphological Analyser, which classifies nouns into morphological classes;

• The German Lemmatizer, which annotates nouns with their lemma.

Additionaly, it uses information provided by two other components:

• A POS-tagger for German (currently we only support the STTS tagset as used by the
TreeTagger1)

• The MuNPEx2 noun phrase chunker for German.

The Durm German lexicon is a main resource in the lemmatization system. It is an automat-
ically created and updated German lexicon containing lemma, number, and case information
for nouns.

For a more detailed motivation, as well as the theoretical background, you should read
our paper on German lemmatization (Perera and Witte, 2005).

1.2 Setup

You should have a working GATE installation including the TreeTagger. Then set up a
pipeline with the following components (Figure 1.2):3

Figure 1.2: Sample pipeline configuration for the lemmatization system

1. Load GATE’s sample application for German: german+tagger.gapp (you can find it
in your GATE installation under gate/plugins/german/resources/). Note: this
pipeline works on the annotation set “NE,” so you’ll either have to (a) also use “NE”
as the input/output annotation set for all downstream components or (b) (perhaps sim-
pler) remove all references to “NE” within the GATE pipeline to make it work on the
default annotation set.

1http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
2http://www.ipd.uka.de/˜durm/tm/munpex/
3If you do not know how to add a new CREOLE repository or load new components into a pipeline, please read the

GATE’s user guide first at http://www.gate.ac.uk/sale/tao/index.html .

6

http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html
http://www.ipd.uka.de/~durm/tm/munpex/
http://www.gate.ac.uk/sale/tao/index.html

1.2 Setup

2. Add the MuNPEx4 noun phrase chunker for German (using the main grammar file
de-np main.jape)

3. Add a JAPE-Transducer component with the grammar file DeLem/de morph main.jape

4. Add the Case Tagger component (CaseTagger/build). Here you’ll have to set the
initialization parameter to the CaseProbs directory containing the probability files.
Note: To add this and the next three components from the GUI, use File → Manage
CREOLE plugins → Add a new CREOLE repository and then select the indicated build
directory.

5. Add the Number Tagger component (Number/build)

6. Add the German Morphological Analyzer component
(GermanMorphologicalAnalyzer/build)

7. Add the main German Lemmatizer component (GermanLemmatizer/build). Here you’ll
have to set the initialization parameter to the file containing the German lexicon:
DE-Lexicon/delexicon.txt .

8. Optionally: add a “Document Reset” component to remove the temp annotations NPFNP,
PosNumber, Preposition, PN, Case, Num, and Gender (see Figure 1.3)

Figure 1.3: You can remove temporary annotations generated by the Durm lemmatizer with
a Document Reset PR component

Now load some German texts and run the pipeline. Enjoy the new annotations for Lemma
and DE-Morph.

4http://www.ipd.uka.de/˜durm/tm/munpex/

7

http://www.ipd.uka.de/~durm/tm/munpex/

1 The Durm Lemmatizer

8

2 German Case Tagger

The German case tagger assigns a grammatical case (Nom, Gen, Dat, Akk) for each noun in
a document.

2.1 Overview

The case tagger is developed as an additional resource to support the Durm lemmatization
system. It is a main component in the Durm lemmatizer since the lemmatizer requires the
grammatical case for nouns in order to determine their base forms. It uses information pro-
vided by a POS-tagger1. It takes sentences tagged for part-of-speech as input and attempts
to produce the best case tag for each noun or pronoun in the sentence. The underlying
tagging algorithm of the case tagger is based on the stochastic tagging algorithm generally
known as the Hidden Markov Model or HMM tagger. For a morphologically complex language
like German, assigning the correct case for each noun is a very difficult task. For example,
given the following sentence:

Sie/NOM AKK trinken Wasser/NOM AKK DAT

Automatically assigning a case tag to each noun or pronoun is not trivial, because the
grammatical case for Sie and Wasser is ambiguous. That is, they have more than one
possible grammatical case. The pronoun Sie can either be nominative or accusative and
the noun Wasser can take 3 possible values for case, nominative, accusative, and dative
respectively. The task of case tagging is to resolve these ambiguities, choosing the proper
tag for the context.

2.2 Usage

2.2.1 Initialization Paramaters

When initializing the case tagger component, you’ll have to set the following parameters:

Name the component’s name, as it appears under PROCESSINGRESOURCE. You can leave it
empty, it will then default to CASETAGGER.

probabilityFiles path to the directory, where the probability files, listed in section 2.3.1, are
stored for the calculation of probabilities for stochastic case tagging. This parameter
should be set when initializing this component.

2.2.2 Runtime parameters

inputASName input annotation set

outputASName output annotation set

extractAnnotations these are annotations to extract in addition to tokens for the case tagger.
Since this component requires NPs in addition to tokens, set this parameter to NP.

1Currently, only the TreeTagger with the STTS tagset is supported

9

2 German Case Tagger

2.2.3 Output Annotations

Case The case (Nom, Gen, Dat, Akk) for every noun in a document.

2.3 Implementation notes

The implementation of the case tagger is based on an HMM tagger. Like other stochastic
taggers, it picks the most likely tag for the noun based on learned probabilities of a training
corpus. The required probabilities are located as files in the directory given as a parameter
when initializing the component.

HMM taggers choose the tag sequence that maximizes the following formula:

P (word | tag) ∗ P (tag | previous n tags) (2.1)

HMM taggers generally choose a tag sequence for a whole sentence rather than for a single
word. The case tagger is based on a trigram-HMM and chooses the tag ti for word wi that is
most probable given the previous two tags ti−1 and ti−2 and the current word wi:

ti = argmax
j

P (tj | ti−1ti−2)P (wi | ti) (2.2)

The interface to the case tagger defines one method, String[] getCaseTags(Document gate-
doc, ArrayList tokens), it accepts a GATE document and an ArrayList of tokens as parameters.
The list of tokens contains a sentence, which contains tokens that are annotated for part-
of-speech. This method returns an array of strings that contains the grammatical case for
each noun in the sentence in the same order as the nouns in the sentence. The underlying
implementation of the case tagger calls the methods in the Viterbi interface, which defines
the functionality of the Viterbi algorithm2, which finds the best sequence of case tags for the
nouns in the sentence.

2.3.1 Probability Files

n1counts.txt Unigram counts

n2counts.txt Bigram counts

n3counts.txt Trigram counts

context2.txt Bigram probabilities

context3.txt Trigram probabilities

WordStat.txt Lexical probabilities P (NN ∨NE | tag) for normales Nomen or Eigennamen

adjstat.txt Lexical probabilites P (ADJA | tag) for attributives Adjektiv

apprstat.txt Lexical probabilites P (APPR | tag) for Präposition

apprartstat.txt Lexical probabilites P (APPRARTS | tag) for Präposition mit Artikel

artstat.txt Lexical probabilites P (ART | tag) for bestimmter oder unbestimmter Artikel

pdatstat.txt Lexical probabilites P (PDAT | tag) for attribuierendes Demonstrativepronomen

pidatstat.txt Lexical probabilities P (PIDAT | tag) for attribuierendes Indefinitepronomen mit
Determiner

2http://en.wikipedia.org/wiki/Viterbi_algorithm

10

http://en.wikipedia.org/wiki/Viterbi_algorithm

2.3 Implementation notes

piatstat.txt Lexical probabilities P (PIAT | tag) for attribuierendes Indefinitepronomen ohne
Determiner

pposatstat.txt Lexical probabilities P (PPOSAT | tag) for attribuierendes Possesivepronomen

pperstat.txt Lexical probabilities P (PPER | tag) for irreflexives Personalpronomen

prfstat.txt Lexical probabilities P (PRF | tag) for reflexives Personalpronomen

Visit the JavaDoc Documentation
../../../Gate/CaseTagger/doc/javadoc/index.html

11

../../../Gate/CaseTagger/doc/javadoc/index.html

2 German Case Tagger

12

3 German POS-based Number Tagger

The German POS-based number tagger determines the number of the subject noun of a
sentence.

3.1 Overview

The POS-based number tagger has been developed as an additional resource to support
the Durm lemmatization system. It analyzes a whole sentence using the part-of-speech
information provided by a German POS-tagger1 and the case information provided by the
case tagger in order to determine the number of the subject noun of a sentence.

Determining the number of the subject is based on a basic grammatical rule in German
that says, the number of the subject should agree with the number of the main verb in the
sentence. With the help of the case tagger we find the subject (case: Nom) of the sentence
and with the help of the part-of-speech tagger we find the main verb. Since we have both
the main verb and the subject, we apply a small heuristic to determine the number of the
main verb. This is done by checking the suffix of the main verb, since in German most of
the plural verbs have the suffix -en or -n. In this way, we determine the number of the main
verb and in turn the number of the subject noun.

3.2 Usage

In a pipeline, this component must be inserted after a POS-tagger and the Case tagger, since
it uses information given by these two components.

3.2.1 Runtime parameters

inputASName input annotation set

outputASName output annotation set

extractAnnotations these are annotations to extract in addition to tokens for the POS-based
number tagger. Since this component requires NPs in addition to tokens, set this
parameter to NP.

3.2.2 Output Annotations

PosNumber The number (Sg or Pl) for the subject in a sentence.

3.3 Implementation notes

Initially this component determines the main verb of the sentence by looking at the POS
tags. This is done by iterating through each token of a sentence and examining the POS

1Currently, only the TreeTagger with the STTS tagset is supported

13

3 German POS-based Number Tagger

of each token until a token with the POS VVFIN2, VAFIN3, or VMFIN4 is found. When the
program finds a token with one of these POS tags, this token is assigned as the main verb
of the sentence, since in German the POS of a main verb is VVFIN, VAFIN, or VMFIN. After
determining the main verb, the program determines the subject of the sentence by looking at
the grammatical case tag for each noun. This is again done by iterating through the tokens
in a sentence until a match is found for POS = NN and Case = Nom, i.e., a noun with the
case tagged as nominative. After finding the subject, it applies the heuristic explained above,
looking at the suffix of the verb, in order to determine the number of the subject.

The interface to the POS-Number tagger defines the method public java.lang.String get-
Number (java.Util.ArrayList tokens) method, where it accepts an ArrayList of tokens as its
arguments to the method and returns a string representing the position of the subject of the
sentence and whether the subject is singular or plural. For example, the string ”30” means
that the 3rd noun of the sentence is singular. The last digit of the string defines the number,
i.e., 0 = singular and 1 = plural.

Visit the JavaDoc Documentation
../../../Gate/Number/doc/javadoc/index.html

2finites Verb, voll
3Infinitive, aux
4finites Verb, modal

14

../../../Gate/Number/doc/javadoc/index.html

4 German Morphological Analyzer

The German morphological analyzer assigns number and gender for nouns in a document.

4.1 Overview

The morphological analyzer considers the context of nouns by analyzing NPs given by the
multi-lingual NP chunker (MuNPE) in order to provide the morphological classification re-
quired for lemmatization. The Durm lemmatizer processes nouns considering their morpho-
logical features such as number, gender, and their surrounding context. Since information
required for lemmatization regarding number and gender cannot be solely determined from
the word form itself, the lemmatization algorithm captures the context of nouns by analyzing
NP chunks.

The algorithm processes NPs with:

• determiners,

• determiners and modifiers,

• modifiers only,

• without determiners or modifiers,

in order to compute the features number and gender. This component uses rules and
heuristics based on the German grammar.

4.2 Usage

Since the main input to this component are NP chunks, this component must be inserted to
the pipeline after an NP chunker.

4.2.1 Runtime parameters

inputASName input annotation set

outputASName output annotation set

extractAnnotations these are annotations to extract in addition to tokens for the German
morphological analyzer. Since this component requires NPs in addition to tokens, set
this parameter to NP.

4.2.2 Output Annotations

Number The number for nouns in the document.

Gender The gender for nouns in the document.

15

4 German Morphological Analyzer

4.3 Implementation notes

This component processes nouns in different ways with respect to their context information
given by the NP chunker. To facilitate this kind of processing, the interface to the lemmati-
zation algorithm defines one method, public MorphologyImpl classifyMorphology (Annotation
token, gate.Document doc), which takes a token as an argument within the currently pro-
cessing document and returns an object of type MorphologyImpl, which holds information
regarding number, gender etc. This method is then implemented in different ways in differ-
ent subclasses in the inheritance hierarchy.

In order to decouple the interface from its implementation so that the two can vary
independently, we have employed the Bridge design pattern. The class Morphology de-
fines the abstraction interface, which maintains a reference to an object of type imple-
mentor and the class GermanMorphology extends the interface defined by the Abstraction.
The class MorphologyImpl defines the interface for implementation classes and its sub-
classes implement the Implementor interface and defines their concrete implementation.
Visit the JavaDoc Documentation
../../../Gate/LemmatizationAlg/doc/javadoc/index.html

16

../../../Gate/LemmatizationAlg/doc/javadoc/index.html

5 German Lemmatizer

The German Lemmatizer lemmatizes nouns in a document based on the morphological fea-
tures number, gender, and case based on the morphological classes generated by the German
Morphological Analyzer and lookups in the Durm lexicon. Additionally, it inserts new entries
into the Durm lexicon and updates existing entries, allowing the lexicon to evolve in both
coverage and accuracy.

5.1 Overview

This component is the last component within the Durm lemmatization system, where the
actual lemmatization and lexicon generation take place. It determines the lemma of nouns
or possible lemma candidates for them by applying a simple algorithm, depending on their
morphological classes as given by the German Morphological Analyzer. It then uses the
lemma given by the lemmatizer to update the lexicon. When it updates the lexicon it also
tries to correct the existing entries in the lexicon as well as the entry that is currently entered
to the lexicon from the entries that are already in the lexicon.

The input to this component is a noun with its morphological features number, gender, and
case. Based on these features the lemmatizer determines the lemma or lemma candidates1.
Afterwards the noun with the lemma including other morphological information is used to
update the lexicon.

5.2 Durm Lexicon

The Durm lexicon is generated automatically from nouns processed by the German Lemma-
tizer. It grows by updating itself, learning correct values for the lexical entries. The lexicon
stores full forms of words with their base form or lemma and other morphological features
such as number, gender, and case. Additionally, it also holds information on:

• The number of times that the entry has been found when generating the lexicon

• Inserted time

• Modified time

• Reference to a file, which specifies documents, where the entry has been found

• A lock to specify, whether the entry’s lemma is correct or manually corrected, and
therefore, needs not to be updated.

An example entry in the lexicon is shown below:

Kinder Pl Masc Nom.Akk.Dat Kind 102 27/7/2005
20:14:52 21/10/2005 8:47:19 36248 locked

1Lemma candidates are generated for nouns with irregular morphological features, for example, nouns with um-
lauts. The correct lemma for these nouns can be identified, when the same noun appears again in a different
context

17

5 German Lemmatizer

The file reference (36248) points to the an entry in an auxiliary file holding information
about the documents containing the word:

36248
file:/home/user/Testdata/TestCorpus3/Test100.txt
file:/home/user/Testdata/TestCorpus3/Test102.txt
.
.
file:/home/user/Downloads/Spiegel/12.05.2005wwwww.txt

Currently the lexicon is available in plain text format. We are also working on making it
available in XML format.

5.2.1 Evolving the Lexicon

The lexicon has the capability of self-correction. This feature has been implemented by
lexicon update procedures. These procedures are illustrated using examples.

Updating Lemmas

If a new word to be inserted has more than one lemma candidate, the lexicon tries to assign
the correct lemma for this new word by looking at the lemmas that are already in the lexicon:

Current state of the lexicon (lemma only)
Land Land
Landes Land

New Entry
Länder L ände.L änd.Lande.Land

State of the lexicon after update
Land Land
Landes Land
Länder Land

In the same way, if a new word to be inserted has the correct lemma, the lexicon tries to
update the words in the lexicon that have more than one lemma using the lemma of the new
word:

Current state of the lexicon (lemma only)
Länder L ände.L änd.Lande.Land
Ländern L änder.L ände.L änd.Lander.Lande.Land

New Entry
Landes Land

State of the lexicon after update
Landes Land
Länder Land
Ländern Land

Automatic Error Correction

The lemmatization algorithm may produce errors, for example, a plural noun wrongly tagged
as singular may not be lemmatized, resulting in a wrong entry. While the lexicon evolves,
such errors produced by the algorithm are corrected automatically. If a word that has a
wrong entry in the lexicon is entered again with the correct lemma, the word itself and all its
inflectional forms will be updated with the correct lemma:

18

5.3 Usage

Current state of the lexicon (lemma only)
Jahr Jahr
Jahre Jahre (wrong)

New Entry
Jahren Jahre.Jahr

State of the lexicon after update
Jahr Jahr
Jahre Jahre (wrong)
Jahren Jahre.Jahr (two possibilities)

New Entry
Jahre Jahr (correct lemmatization)

State of the lexicon after update
Jahr Jahr
Jahre Jahr
Jahren Jahr

5.2.2 Manual Correction of Entries

Some entries in the lexion may need to be corrected manually or some manual inspection
may be done to avoid the system from updating correct lemmas. Those entries that have
been manually corrected or have been determined as correct will be locked. Locked entries
are not be processed by lexicon update algorithms.

5.3 Usage

This component must run after case tagger, POS-based number tagger, and the morphologi-
cal analyzer components.

When initializing the case tagger component, you’ll have to set the following parameters:

lexiconPath path to the directory, where the Durm lexicon is stored. This parameter must
be set when initializing this component.

5.3.1 Runtime parameters

inputASName input annotation set

outputASName output annotation set

5.3.2 Output Annotations

Lemma The lemma produced by the lemmatizer for nouns in a document.

DE-Morph An annotation containing values for number, gender, and case for nouns in a
document (Figure 5.1).

5.4 Implementation notes

The lexicon is loaded when the component is initialized. The updates to the lexicon are
written to the lexicon during run-time. The lexicon entries are stored in hash tables. In
order to support self-correction and fast updates, three hash tables are employed. The
first hash table lexiconEntries stores lexicon entries, pointing to all its features like number,
gender, case, lemma etc., the next hash table entriesLemma only to the lemma, and the last

19

5 German Lemmatizer

Figure 5.1: Example output annotation generated by the Durm lemmatizer

hash table lemmaEntries contains lemmas in the lexicon pointing to their respective entries.
The lexicon update algorithms are coupled with these hash tables.

Due to its higher accuracy, the lemma produced by the lexicon has precedence over the
lemma produced by the algorithm, if both are bale to determine the lemma.

Visit the JavaDoc Documentation
../../../Gate/GermanLemmatizer/doc/javadoc/index.html

20

../../../Gate/GermanLemmatizer/doc/javadoc/index.html

Bibliography

Praharshana Perera and René Witte. A Self-Learning Context-Aware Lemmatizer for German.
In Proceedings of Human Language Technology Conference and Conference on Empirical
Methods in Natural Language Processing (HLT/EMNLP 2005), pages 636–643, Vancouver,
British Columbia, Canada, October 6–8 2005. Association for Computational Linguistics.
http://www.aclweb.org/anthology/H/H05/H05-1080 .

21

http://www.aclweb.org/anthology/H/H05/H05-1080

	The Durm Lemmatizer
	Overview
	Setup

	German Case Tagger
	Overview
	Usage
	Initialization Paramaters
	Runtime parameters
	Output Annotations

	Implementation notes
	Probability Files

	German POS-based Number Tagger
	Overview
	Usage
	Runtime parameters
	Output Annotations

	Implementation notes

	German Morphological Analyzer
	Overview
	Usage
	Runtime parameters
	Output Annotations

	Implementation notes

	German Lemmatizer
	Overview
	Durm Lexicon
	Evolving the Lexicon
	Manual Correction of Entries

	Usage
	Runtime parameters
	Output Annotations

	Implementation notes

