
1 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

A Story Driven Approach to Software Evolution

Juergen Rilling1, Wen Jun Meng1, René Witte1, Philippe Charland2

Department of Computer Science1

and Software Engineering

Concordia University, Montreal, Canada

{w_meng, rilling, rwitte}@cse.concordia.ca

System of Systems Section2

Defence R&D Canada – Valcartier

Québec, Canada

philippe.charland@drdc-rddc.gc.ca

Abstract

From a maintenance perspective, only software that is well understood can evolve in

a controlled and high quality manner. Software evolution itself is a knowledge-

driven process that requires the use and integration of different knowledge re-

sources. In this paper, we present a formal representation of an existing process

model to support the evolution of software systems by representing knowledge re-

sources and the process model using a common representation based on ontologies

and description logics. This formal representation supports the use of reasoning ser-

vices across different knowledge resources, allowing for the inference of explicit

and implicit relations among them. Furthermore, we introduce an interactive story

metaphor to guide maintainers during their software evolution activities and to mod-

el the interactions between users, knowledge resources, and the process model.

Keywords: Software evolution, software maintenance, process modeling, story me-

taphor, ontological reasoning

2 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

1. Introduction

Software evolution is a knowledge-driven process, with knowledge being continually

integrated from different sources (including source code repositories, documentation, test

case results) and at different levels of abstraction (from single variables to complete sys-

tem architectures). For maintainers to perform and complete a particular maintenance

task, they typically need to use and interact with various tools and techniques (e.g., pars-

ers, debuggers, source code analyzers, visualization tools). Identifying knowledge re-

sources that are applicable in a given maintenance context can become a major challenge

for software maintainers. Furthermore, there often exist non-obvious direct or indirect

dependencies among these knowledge resources that require maintainers to follow a cer-

tain sequence of steps in order to accomplish a particular evolution task. As a result, both

maintainers and organizations are facing the challenge of deriving and applying proce-

dures that provide for guidance to utilize these existing resources more efficiently [47, 48,

49].

Various process models [5, 6, 10, 19, 49] supporting the evolution of software have been

introduced. Common to most software and, more specifically, software evolution process

models, is that they share a generality in abstracting and describing activities to be per-

formed and resources to be used as part of the process. This generality can become, from

an organizational viewpoint, a major challenge in adopting them. Organizations often

have to adapt their own internal processes to support a particular process model, and they

also need to modify and customize this process model so that it can be supported or sus-

tained as part of a larger organizational context. Organizations are often left alone in es-

tablishing context-awareness and customization of process models. From an organization-

al perspective, it is possible to define processes in such a detail that the resulting model

not only describes the required maintenance activities, but also resources that must be

employed. However, these well defined process models are typically based on the as-

3 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

sumption that resources and the knowledge provided by these resources are known at the

process specification time, resulting in a static (closed world) resource and knowledge

allocation. This closed world assumption however restricts the ability to integrate newly

gained knowledge and resources within these process models. There has been little work

in examining how these resources can be applied and used collaboratively to support a

specific software maintenance task [43]. Maintainers are often left with no guidance on

how to complete a particular task within a given context, using a set of available resources

(e.g., tools, artifacts). Current research in software evolution has lead to a set of task spe-

cific tools and techniques that are not integrated, due to a lack of integration standards and

frameworks to allow sharing services among them.

The problem of knowledge and process integration is not unique to software mainten-

ance. Other application domains, including Internet search engines (e.g., Google1) or on-

line shopping sites (e.g., Amazon2) are facing similar challenges. Common to these appli-

cation domains is that they use different information resources to support users in a given

context. For example, during an online shopping session, users will typically find related

information on other relevant products, customer reviews, product summaries, etc. Tools

and techniques are utilized to enhance the shopping experience and facilitate the online

shopping process. The two major challenges in applying similar approaches to support

software evolution are: (1) The lack of formal models to represent and link relevant know-

ledge resources and process activities; and (2) the resulting lack of a suitable metaphor to

model the interaction between users, the model, and the relevant resources.

In this research, we focus in particular on modeling the interactions between

maintainers, a process model, and its relevant knowledge resources. The presented

research is a continuation of our previous work on modeling program comprehension

[27] by introducing a software evolution ontology that models both software evolution

process specific aspects and knowledge resources relevant to software evolution.

1 www.google.com
2 www.amazon.com

4 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

We introduce a novel formal ontological representation that models and integrates

software process specific information with software and other knowledge resources

(e.g., domain knowledge, documents, user expertise, historical data, etc.). The goal of

this common representation is to reduce the conceptual gap caused by the type of ab-

stractions and languages found in these artifacts. Having a common ontological repre-

sentation allows maintainers not only to explore knowledge relevant to their given task

across the different modeled artifacts, but also to enrich their current understanding of

a system and share their knowledge. Furthermore, traceability between software

processes and knowledge resources can be established by providing non-trivial rela-

tionships among these artifacts. Ontologies also provide support for extending an ex-

isting knowledge base to reflect more closely an “open” world assumption [3], by al-

lowing for both the modeling of incomplete knowledge and the enrichment of the

knowledge base with newly gained knowledge. Moreover, having a formal ontological

representation also allows us to take advantage of automated reasoning services pro-

vided by ontology reasoners to infer implicit relations (links) between processes and

knowledge resources. Figure 1 shows a simplified example that restricts the available

information resources to tools and tasks. Different strategies (top-down, bottom-up or

integrated approach) are provided to support maintainers in the use of the knowledge

resources and to answer questions such as:

(1) Which tools might directly or indirectly be required to perform a particular

comprehension task following a top-down approach?

(2) Given a current knowledge level acquired using a bottom-up strategy, what

are the potential (directly/indirectly) related tasks that can be performed?

5 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Fig. 1 Conceptual model

Our research is not only motivated by this need to synthesize these different information

and knowledge resources used within our formal framework, but also by the ability to

provide maintainers with a context directly related to a specific process activity. The ac-

ceptance of any new technology or approach is directly dependent on delivering added

benefits to the users or management of an organization. For a process environment to be

accepted by maintainers, it is essential that it provides a supporting framework that cap-

tures the context in which the process model is applied and that it also links resources to

the process. For the contextual representation, an intuitive visual metaphor is needed to

establish an interaction model between the user and the process model. We introduce a

story metaphor that addresses the following three major issues:

(1) a metaphor that is familiar to users;

(2) a metaphor that can be mapped closely to the activities of a software evolution

process and its activities;

(3) a metaphor that can be expressed at different levels of abstraction to reflect the

different granularity of knowledge and context that need to be represented.

6 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

The story metaphor not only models the interactions between users and the ontologi-

cal representation in terms of process context and resources, but it also provides the basis

for developing a supporting environment.

The overall goal of our research is not to provide a concrete solution to a specific

software evolution activity, but rather make use of explicit and implicit knowledge found

in the software maintenance domain. We focus on the integration of this knowledge with-

in the maintenance process by establishing traceability links between process activities

and applicable resources at the knowledge level, and modeling the interaction between

users and the process.

Our approach differs from existing work on comprehension models [25, 26, 38], tool in-

tegration [20, 43], and software evolution related process models [5, 6, 10, 19,36] in sev-

eral important aspects:

1. We introduce a formal ontological representation based on Description Logics

(DL) to support the modeling, integration and linking of processes (process

activities), and knowledge resources relevant to these processes.

2. The ability to reason about knowledge modeled using this ontological represen-

tation to infer explicit and implicit knowledge, in order to provide an active

and context sensitive guidance during a software evolution process. This in-

cludes knowledge inference across multiple sub-ontologies and the ability to

model incomplete knowledge.

3. An interactive story metaphor was adopted to model the dynamic interaction as-

pects between users and the comprehension process.

4. An environment utilizing the modeled knowledge, process, and user interaction

to guide maintainers during software maintenance tasks.

The remainder of the paper is organized as follows: Section 2 provides a brief review of

existing software evolution process models and their limitations. Section 3 introduces

7 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

background related to OWL ontologies and inference services provided by ontological

reasoners. Section 4 introduces the conceptualization of software evolution and its corres-

ponding ontological model. Section 5 introduces the story metaphor used to model the

interaction between users and the process. Section 6 discusses the implementation and

validation issues, followed by Section 7 with the related work. Conclusions and future

work are outlined in Section 8.

2. Software Evolution Process Models

Historically, software lifecycle and process models have focused on the software devel-

opment cycle. However, with much of a system’s operational lifetime cost occurring dur-

ing the maintenance phase, this should be reflected in both the development practices and

process models supporting maintenance activities. One approach to model software main-

tenance is to include software maintenance aspects as part of the total system life

cycle/process model, as suggested for example in [5, 19]. Other approaches to model

software maintenance include deriving maintenance specific process models. Among

these maintenance specific models are the quick-fix, iterative enhancement, full-reuse

model [5], the staged model [6], the SEI CMMI model [10], and the IEEE Std 14764-2006

– Software Life Cycle Processes – Maintenance [19].

One of the challenges in applying these models is that various aspects can affect soft-

ware evolution [26, 30, 42], making it an inherently complex and difficult problem to ad-

dress. Some of these aspects influencing software evolution include a user’s comprehen-

sion ability (e.g., experience, knowledge background), the characteristics of a software

system to be maintained (e.g., its application domain, size, and complexity), the mainten-

ance task itself to be performed (e.g., adaptive, corrective, or perfective maintenance), as

well as the tools and software artifacts available to support the evolution.

Common to most existing process models, including evolution models, is that they do

not specify how any available supporting resources (tool, system, user expertise, software

8 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

artifacts, etc.) should be integrated within the process in a given context. Current research

in software maintenance focuses mostly on providing conceptual guidance (such as the

documented standards) or on developing tool support to address some specific aspects of a

software maintenance task. An example of such a process model is the IEEE Std 14764-

2006 [19] that lists and describes activities and their sub-activities, referred to as task-

steps, as part of the process model. However, the standard provides only limited or no

details on how to implement or perform the activities and task-steps specified in it.

Common observations that can be made from most existing software evolution process

models are:

• They tend to provide only general descriptions of the steps involved in a

process, lacking details or guidelines on how to complete these steps in a giv-

en task and/or organizational context.

• They are limited in their ability to provide a cohesive integration of existing

knowledge resources (e.g., user expertise, source code information, tools) and

newly gained knowledge (e.g. experienced gained from previously performed

maintenance tasks) within the process.

• Lack of tool support that can provide users with an active, context-driven

guidance during the comprehension process, to help reduce their cognitive

load.

3. Ontologies and Reasoning

Intuitively, maintainers perform various activities while maintaining a software product.

These activities include understanding, conceptualizing, and reasoning about the software

to be maintained. Therefore, support for developing a user’s mental model during soft-

ware evolution is needed to assist and improve human thinking processes. Research in

cognitive science has suggested that mental models may take many forms, but the content

normally constitutes an ontology [21].

9 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Ontologies have their origins in philosophy, where ontologies correspond to a theory

about the nature of existence and the categories of things that exist [45]. In computer

science, ontology is “an explicit specification of conceptualization” [13] to provide a for-

mal model of a certain domain. There exists a variety of ontology languages with different

degrees of formality. Some of these languages are based on graphical notations such as

semantic network, UML, or RDF. Others are based on logic such as Description Logics

(DL) (e.g., OIL, DAML+OIL, OWL), Rules (e.g., Prolog), or First Order Logic (e.g.,

KIF) [3, 18, 40].

DLs are a family of logic-based knowledge representation formalisms [2] that can be

distinguished by their formal semantics and inference services. DLs describe domains in

terms of TBox (also known as concepts or classes), roles (also known as relationships or

properties) and ABox (also known as individuals or instances). Particular DLs can be cha-

racterized by the set of constructors they support for building complex concepts and roles

from simpler ones and the set of axioms available for asserting facts about concepts, roles,

and individuals [18]. Although DLs have many applications (e.g., databases, configura-

tion, software engineering and natural language processing [2]), DLs are currently best

known as the basis for formal ontological languages such as OIL, DAML+OIL and OWL

[18].

3.1 Web Ontology Language (OWL)

The Web Ontology Language (OWL) [18, 44] is the foundation of the Semantic Web

[7], providing machine understandable Web information to enable automatic processing

and integration of Web resources. OWL was created based on Web standards such as

XML and RDF(s) and it exploits SHOIN(D) DL for supporting greater machine interpre-

tability of Web content [18]. OWL is built on earlier DL-based ontology languages OIL

and DAML+OIL and is the current recommendation of the World Wide Web Consortium

10 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

(W3C)3 [44]. OWL has three increasingly-expressive sublanguages: OWL Lite, OWL-

DL, and OWL Full. We adopted OWL-DL as it provides the best tradeoff between ex-

pressiveness and reasoning power.

An OWL ontology can be seen as a DL knowledge base that consists of DL TBox and

ABox. OWL describes a domain in terms of classes, properties and individuals. OWL

ontologies can be constructed incrementally by first specifying elementary descriptions,

such as simple classes and properties, and then defining more complex class and property

descriptions inductively through a set of OWL-DL constructors and axioms. A class de-

scription can also be used to define queries to describe sets of individuals [2].

OWL ontologies can simply be used as a data storage medium, similar to traditional da-

tabases. However, the use of DL to define the ontological model allows for a more precise

and expressive representation than traditional data semantics [2] and is also the foundation

for automated reasoning support. Reasoning is a mechanism to infer implicitly represented

knowledge from the knowledge that is explicitly represented in a knowledge base [2]. DL

has been designed to support both TBox (concept) reasoning and ABox (individual) rea-

soning. Typical reasonings for TBox are satisfiability check to determine whether a de-

scription is satisfiable (can have individuals) or subsumption test, to examine whether one

description is more general than another one [2]. Concepts can be organized into a termi-

nology hierarchy according to their generality through the use of subsumption reasoning

[2]. Other TBox reasoning includes classification and consistency check. Basic reasoning

for the ABox includes instance checking, i.e., whether a given individual is an instance of

a certain concept. Additional ABox instance reasonings can be derived from instance

checking, such as instance retrieval, tuple retrieval, and instance realization. For a more

detailed coverage of DL and reasoning services, we refer the reader to [2, 14].

3 http://www.w3.org/

11 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

3.2. Process Ontology Example

In what follows, we briefly illustrate the use of both ontologies and reasoning services

on a simplified subset of our ontological model. Figure 2 presents a simplified ontology

that consists of four atomic concepts (Person, Team, Organization, and Project) and three

atomic roles (manage, program, and work). The ontology is populated with four individu-

als, Mike (Person), InfoGlue_001, uDig_001 and Debrief_001 (Project).

Fig. 2 A simplified partial maintenance ontology

Defining New Concepts

Two new concepts, Manager and Programmer, can be defined to enrich the existing

ontology (Figure 2). In the following two expressions, Manager is first defined as a per-

son who has managed some project; likewise, Programmer can be defined as a person

who has performed some programming as part of a project. Based on these concept defi-

nitions, one can now verify the following assumptions about a person Mike. If the as-

sumption “Mike has programmed in a certain project such as Debrief_001” is true,

the assumption that “Mike is a programmer” will also automatically hold.

Manager ≡ Person ⊓ ∃manage.Project.

Programmer ≡ Person ⊓ ∃program.Project.

12 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

TBox Reasoning

OWL-DL allows for the specification of a role hierarchy through the use of the subpro-

perty axiom. The following example illustrates a TBox classification through the use of

such a subPropertyOf axiom. A new role participate can be defined as a super role

of manage and program, denoted as:

 manage ⊑ participate,

 program ⊑ participate.

Having such a participate role specified, a new concept participant can now be

defined as a person who has participated previously in some projects:

Participant ≡ Person ⊓ ∃participate.Project.

Given the above knowledge, the reasoner can now infer that Manager and Program-

mer are both subconcepts of Participant and therefore, all instances of Manager

and Programmer become instances of Participant.

OWL-DL also supports transitive roles. Given the transitive roles P(x,y) and

P(y,z) -> P(x,z). In Figure 2, work corresponds to such a transitive role, where a

person works in a team and a team itself works on some projects. The person works in an

organization relationship is not asserted, but based on the transitive work role, the rea-

soner can now infer that all persons who work in a team also work for the organization the

team belongs to.

ABox Reasoning

In addition to TBox reasoning, ABox reasoning can also be applied to perform instance

checking. For example, Mike is a Person and Debrief_001, uDig_001, and In-

foGlue_001 are three different project instances. We can now define a new concept

ExperiencedProgrammer as:

13 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

ExperiencedProgrammer ≡ Programmer ⊓ ∃ ≥3program.Project.

Given that Mike has programmed in three project instances (Debrief_001, uDig_001

and InfoGlue), the reasoner can now automatically infer that Mike is a project participant

and also an experienced programmer.

Summary

Based on the above discussion, we adopted OWL-DL as the ontological modeling lan-

guage for our research. OWL-DL representation is applicable to model the dynamically

evolving software maintenance domain, due to its support for domain knowledge evolu-

tion (concept, role and instance creation and population). In addition, it not only provides

a more precise and expressive representation of the domain, but also enables automated

reasoning to process the content of the represented domain. For a more detailed discussion

on OWL ontologies, DL and reasoning, we refer the reader to [2, 14, 44].

4. A Unified Ontological Software Evolution Process Model

Models are essentially an abstraction of real and conceptually complex systems to

represent their significant features and characteristics [22]. For any model to provide add-

ed benefits, it is essential that the model is being accepted and used by the expected users.

In what follows, we introduce two criteria we applied for modeling software evolution

processes and their related knowledge resources.

• Support and adaptability: For a process model to be adopted by an organiza-

tion and/or end-user, the model has to be adaptable to a given organizational

structure. It also has to provide additional benefits to the user in the form of

providing guidance in applying the model towards a specific maintenance task.

• Flexibility and extendibility: Process models have to be able to adapt to ever

14 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

changing maintenance contexts and knowledge resources, therefore requiring

the ability to evolve over time to reflect these new requirements.

4.1 Conceptualizing Software Evolution

Building a formal ontology for software evolution requires the analysis of concepts and

relations in this discourse domain. From a software practitioner’s perspective, it is there-

fore essential that the ontological Knowledge Base (KB) includes and models concepts

and roles critical to software evolution processes. Indeed, our conceptualization work has

been influenced by other works in modeling software maintenance [11, 23, 37] and the

observations of best software maintenance practices. Our approach to construct this KB is

twofold: (1) We created sub-ontologies for each of the key discourse domains, such as

tasks, software, documents, and tools; and (2) we linked them via a number of shared

high-level concepts, like artifact, task, or tool, which have been modeled akin to a (sim-

ple) upper level ontology [28]. Figure 3 provides a simplified view of the resulting meta-

model, focusing only on the major concepts and their roles. In what follows, we briefly

summarize these key sub-ontologies.

Task: Describes a unit of work that is triggered by an emerging modification request

(MR) or problem report (PR). Information about MRs or PRs, task assignment, tool log

(tool used in the task solving process), activity log, etc. is modeled in this sub-ontology.

For example, the instances in this sub-ontology might be “Debrief XML decrypt/encrypt

component substitution request” (an instance of concept Request), “corrective” (an

instance for concept RequestType), and “successfully finished” (an instance for con-

cept TaskStatus).

15 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Fig. 3 Software maintenance meta-model

User: Describes maintainers involved in the software maintenance process. Information

about the involved roles and their related skills, competencies and responsibilities are

modeled. The users involved in the software maintenance can be an individual, an organi-

zational team, or an entire organization. The example instances in this sub-ontology might

be “Mike Smith” (an instance of concept Person), “SE group” (an instance of concept

Maintainer), and “MR reporter” (an instance of concept Role).

Artifact: Describes artifacts associated with both the software product (source code, do-

cumentation, etc.) and the maintenance process (documents, models, etc.) that are pro-

duced as part of the maintenance process (Figure 4). At the current stage, we consider

16 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

artifacts to be either related to the software system or to the maintenance task. Figure 4

shows a partial view part of the taxonomy of the artifact sub-ontology. Artifact itself is a

super class of the Artifact sub-ontology, which has two subclasses: SoftwareAr-

tifact and TaskArtifact. The software system related artifacts are further classi-

fied into software documents, software components and libraries, and artifacts made

available by supporting tools. Task related process artifacts correspond to artifacts, like

guidelines, reports, etc.

Fig. 4 Partial view of the Artifact sub-ontology

Subject system: Describes the software system to be maintained and includes informa-

tion about the programming language(s) used, application domain, etc.

17 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Process: Describes the interactions and relationships among different sub-activities with-

in a maintenance process model. The example instances in this sub-ontology can be

“IEEE Std 14764 – Software Life Cycle Processes – Maintenance” (an instance of con-

cept ProcessModel), “5.3 Modification Implementation” (an instance of concept Ac-

tivity), “5.3.2.1 Analysis” (an instance of concept Task), and “5.3.2.1 a” (an instance

of concept TaskStep).

Technique: Describes the software techniques that can be used for supporting software

maintenance (program comprehension technique, source code analysis technique, impact

analysis technique, etc.). Based on the previous work by Dias et al. [55] and Pressman

[57], the following techniques supporting the following activities can be identified: re-

quirement elicitation, maintenance support, programming related, testing, configuration

management, documentation, and modeling technique.

Tool: Describes the software tools used to carry out a function or service with the goal to

simplify maintenance tasks [56]. At the current stage, our Tool sub-ontology provides

general categories for commonly used maintenance tools and describes their key features

for supporting software maintenance activities. Tools can be classified by their functio-

nality, their role in supporting managers and maintainers, their particular use during the

various steps of a software engineering process, their supported environment (hardware

and software), or even by their origin or cost. Pressman [57] provides a comprehensive

classification of tools by their functions, which includes, among others, analysis, design,

programming, software configuration management, testing and documentation tools. In

our approach, tools and techniques in the KB are automatically classified through the use

of reasoning. For example, programming tools can be classified based on their support for

a particular programming language, operating system, applicability for a specific task,

etc.

18 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

As discussed previously, software evolution is a multifaceted and dynamic activity involv-

ing different resources, which utilizes these resources to enhance the current knowledge

about a system. Existing work on ontological modeling of the software engineering do-

main, including its processes, has focused on conceptualizing the domain [50, 51] to es-

tablish a common terminology or to model specific aspects of software engineering

processes [50, 51, 52]. In the context of our research, we adopt core parts of these ontolo-

gies and further enrich them with new concepts and relationships to more closely reflect

(1) the particular needs of our particular modeling goal – establishing traceability links

between the process and various knowledge process related knowledge resources. (2) pro-

vide a design that fully supports and utilizes optimized DL reasoners, such as Racer [14]

in our case, to infer additional knowledge.

An essential part of our model is the ability to support both the knowledge acquisition and

use of the newly gained knowledge. The unified ontological representation provides the

ability to dynamically add new concepts and relationships, as well as new instances of

these to the KB. This extendibility enables our model to be constructed in an incremental

way, closely modeling the same iterative knowledge acquisition behavior used to create a

mental model as part of human cognition of a software system. Having these different

sub-domains modeled as sub-ontologies also allows for the automated processing (e.g.,

reasoning) and integration of this knowledge at a concept and/or instance level. However,

it would not be realistic to expect that all these sources share a single, consistent view

within a maintenance task. Rather, we expect disagreements between individual users and

sub-ontologies during an analysis. We explicitly capture those different views using a

representational model that attributes information to (nested) contexts using so-called

viewpoints [4]. The detailed knowledge management strategies have been discussed al-

ready in our previous paper [27]. Having this knowledge management mechanism in

place, our ontological model can evolve over time to reflect new maintenance contexts

and knowledge resources, addressing the flexibility and extendibility acceptance criteria

introduced earlier.

19 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

4.2 An Ontology Based Software Evolution Process Model

For the foundation of our evolution model, we have adopted the most recent IEEE soft-

ware maintenance standard [19]. The maintenance standard describes activities for both

managing and executing software maintenance tasks. The starting point for the mainten-

ance process is either a maintenance request (MR) or problem report (PR). The mainten-

ance process itself is detailed within the standard by six major activities: process imple-

mentation, problem and modification analysis, modification implementation, maintenance

review/acceptance, migration, and retirement. Each of these activities is again described

by a set of tasks, which are further refined by a list of task-steps. These task-steps corres-

pond to the most fine-grained activities described by the standards document. However,

the IEEE standard, like most process models, describes only a general software mainten-

ance process without specifying any details on how to adopt or perform these specific

activities and tasks in a given maintenance context. Furthermore, the IEEE standard also

lacks support on how existing knowledge and resources within an organization can be

adopted to support these process activities.

Presently, we are limiting our modeling scope to a subset of these activities described

within the IEEE standard, namely the problem modification analysis, modification im-

plementation, and acceptance phase, corresponding respectively to Section 5.2, 5.3, and

5.4 in the document. These activities are closely related to performing the actual mainten-

ance task rather than addressing more global organizational issues related to software

maintenance (Section 5.1, 5.5, and 5.6 [19]). The major concepts (e.g., maintenance re-

quest, activities, tasks, task-steps, and their required input and output) and their relation-

ships (e.g., follows, requires, delivers) documented in the maintenance standard have been

modeled as part of our process sub-ontology. Figure 5 shows a partial view of the ontolog-

ical representation of the IEEE software maintenance process.

20 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Fig. 5 A partial view of the process sub-ontology

The IEEE software maintenance model is formalized as part of our process sub-

ontology, allowing for both the provision of a unified representation of process and know-

ledge resources and the ability to establish links between knowledge resources and the

process activities in the existing maintenance standard. In our approach, these traceability

links are established through either design level links via OWL-DL axioms and relations,

or at the logical level through a set of predefined queries. In terms of the design level

links, OWL-DL axioms or concepts can be used to establish the links between the process

model and other knowledge resources modeled. Relationships/properties specified as

OWL axioms can be used to establish implicit links as well. For example, in task-step

“5.3.2.1 a) Identify the elements to be modified in the existing system” [19], the sup-

portedBy property can be utilized to link automatically the task-step with supporting

21 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

tool resources. The supportedBy relation in Figure 6 is defined as transitive property

used to link Task Step with technique (1) as well as for linking Technique with Tool (2).

Then the links between TaskStep and tools can be automatically derived through the in-

ferred link (3). As a result, each task-step in the process ontology can automatically be

linked through this transitive supportedBy property to the subontologies of Technique

and Tool. Through further traversing of the transitive closures across the subontologies,

other knowledge resources can be identified (Figure 6).

Figure 6.Transitive design level links

In addition to these design level links, logical links between the process and the know-

ledge resources can be established through predefined queries for each task-step.

 Figure 7 illustrates the use of a set of predefined queries to support different process task

steps. Users can also define their own supporting queries based on their experience to ex-

tract, explore and reason upon the information stored in the KB.

22 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Fig. 7 Task supporting queries

These predefined queries supporting the different task-steps allow users to retrieve expli-

citly modeled knowledge, as well as inferring implicit knowledge across the KB to sup-

port a particular task-step (Figure 7). The query below shows such an implicit knowledge

support through a predefined nRQL query [16]:

 (retrieve (?tool ?technique)

 (and (IEEE_Step5.3.2.1a ?tool supportedBy)

(?technique ?tool supportedBy)))

In this query, all tools providing techniques applicable to task step 5.3.2.1a in the IEEE

standard will be identified. In this query, several sub-ontologies (process,

tools,techniques) are queried to retrieve the task step relevant information.

23 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

As discussed, our unified ontological representation allows for conceptualizing, stor-

ing, linking and retrieving software evolution processes and their relevant knowledge re-

sources. Providing both pre-defined and user-defined queries addresses our first accep-

tance criterion for the process model, related to support and adaptability. Through the use

of the pre-defined and user-defined queries and the underlying reasoning services, our

model allows customization of the process support and also provides users with contextual

information relevant to their given task. However, a metaphor is needed to represent the

interaction between users and the ontological model. In the following section, we intro-

duce a story [31, 35] based metaphor to model this interaction between users and our uni-

fied ontology.

5. A Software Evolution Story Model

Stories are ubiquitous, universal, and readily implanted and recalled in human minds [15].

They are widely used to convey information, cultural values, and experience [61]. It is

suggested that humans build cognitive structures that represent real events in their lives

using models similar to the ones used for narrative stories in order to better understand the

world around them [9]. People usually find it is easier to understand information inte-

grated within a story context instead of serial lists [61]. Learners constantly adjust their

understanding in accordance with their exposure to conventional narratives, making the

construction of narrative a central cognitive goal [32].

5.1. Story Models in Software Engineering

 A story itself is a narrative, which, in its simplest form, provides a temporally ordered

sequence of events (Table 1) [34]. Storytelling can be applied by scripting a story of the

complete system at design-time or by generating stories dynamically on a per-session ba-

sis [35]. A system that can generate stories dynamically is capable of adapting the story

24 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

narrative to the user’s preferences and abilities. Stories themselves can be represented in

various ways, like using text, image or animation.

Table 1 Story Model [31]

Story Model Description

Theme Overall message, concept, or essence of a story; ties every structure and dynamic
element.

Genre Establishes an author’s overall attitude, which casts a background on all other
considerations.

C
haracters

Protagonist Main story character - driver of the story: the one who forces the action to resolve
the problem and reach the ultimate goal.

Impact
Character

Might be an antagonist (desire to let the problem grow), guardian (functions as a
helper/teacher, a protective character who eliminates obstacles and illuminates
the path ahead), or contagonist (works to place obstacles in the path of the Prota-
gonist, and to lure it away from success) etc.

Settings Place, time, weather conditions, social conditions, or mood or atmosphere etc.

Plot A series of logic events that develop a story; details the order in which the ele-
ments must occur within that story.

Throughline The point of view and growth of the main character within the story world.

Interaction What occurs between characters (or even ideas) is presented. Interaction can
occur as connections and disconnections.

Conflict Everything that prevents or gets in the way of the protagonist in achieving the
goal.

Climax

/Resolution

At this point the obstacles are no longer a threat and any conflict disappears.

The story notation has already been applied in different domains. In Extreme Program-

ming (XP), stories are used as a communication media to elicit requirements. In UML, a

scenario diagram is a descriptive story of a use case, detailing what happens between us-

ers and the system for a specific function. Sequence diagrams can also be viewed as a

more formal story representation of a system behavior, delineating how operations are

25 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

carried out - what messages are sent and when, by emphasizing the time ordering of mes-

sage passing among objects [60].

5.2. A Story-Driven Interaction Model

In this section, we introduce our interactive story-driven software evolution model. The

major motivation for applying a story metaphor is to provide us with a metaphor that al-

lows us to model (map) user interactions between process models and knowledge re-

sources to a visual metaphor. The story driven metaphor not only supports the mapping of

user interactions with the underlying process model and knowledge resources. It also pro-

vides the basis for developing a tool environment to support user interactions with the

process model.

From a maintenance perspective, maintainers typically become immersed in the setting

in which the particular maintenance task (story) unfolds [8, 48] and the user (maintainer)

is considered as an active character in the story, able to interact with different elements,

including relevant knowledge resources [46, 49] (e.g., tools, techniques, maintainers and

their expertise) and other characters (e.g., system or historic user data) while following the

process (through line).

From a story perspective, the evolution process can be viewed as authoring an interac-

tive narrative between users and knowledge resources towards completing a specific goal

(task). The similarities among a story model and a maintenance process model allow for a

direct mapping of the formal (ontological) representation of the process and resources

with the story metaphor.

Furthermore, given the story model, this model can be easily mapped to different meta-

phors, like text, image, animation, depending on the abstraction level needed. Table 2

illustrates this mapping between the story model and the evolution process.

26 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Table 2 Mapping between the story metaphor and the software evolution process model

Story Model Software Evolution Model

Theme Evolution task

Story A specific maintenance request or problem report

Genre Type of maintenance activity, e.g., perfective, adaptive, cor-
rective maintenance

C
haracters

Protagonist The maintainer or user who performs the evolution task

Impact/other cha-
racters

Historical user experience, process manager, ontology man-
ager and reasoner.

Settings

Organizational settings, available knowledge resources:
software, tools, techniques, maintainers, etc.

Plot Process management

Throughline Interactive communication between user and plot based on
the underlying process model (activities and task-steps)

Interaction Inter-relationships between the characters and the know-
ledge resources and process activities

Conflict Lack of necessary resources, unsuccessful use of resources

Climax/Resolution Final outcome of the process (success/failure)

A typical usage scenario for our story based evolution process model is illustrated in Fig-

ure 8, reflecting the iterative nature of the knowledge acquisition and its use by the loop

(messages 2-22). A user (maintainer) corresponds to the protagonist in the story who has

to complete a particular evolution task. The story manager, ontology manager (process

manager), and reasoner are all examples of impact characters that might impact the user

and, therefore, the story interaction. Knowledge resources are the available elements in

the story environment (setting), and users can use them during the task solving process.

The story manager is the main character with whom the user interacts during the task

solving process.

27 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Fig. 8 Resources usage sequence diagram

Based on a given story (task) setting (Message 1), the story manager applies a set of

predefined queries to support the different process activities, by identifying potential

knowledge and other resources that might be applicable to the current activities (Message

2-14). The user interacts with the process through the story metaphor, providing the cur-

rent process context and the ability to trigger new events and actions. One of the major

advantages of our ontological representation is not only the ability to reason across the

different information resources, but also the ability for users to add newly gained know-

ledge (concepts, relations, and instances) to the system and make these available for fur-

ther processing. For instance, Message 9 may return a list of techniques that support a

28 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

particular maintenance activity, like impact analysis or reverse engineering. The resulting

set of tools will be further analyzed by the process manager and a potential applicability

ranking of the tools and techniques is provided. At this point, the protagonist has the

choice between three different options: (1) accept one of the suggestions (shown in the

scenario in Figure 3 – Messages 15-18), (2) explore all available knowledge and other

resources stored in the ontologies, or (3) create customized queries to search and filter

information for specific settings, tools, or historical data.

After the completion of a task-step, the protagonist will provide feedback and annotate

briefly the applicability of the knowledge resource towards solving a particular task-step

(Messages 18-22). The feedback is used to further enrich the ontology, as well as trigger-

ing the next task-step or activity in the evolution process.

6. Implementation and Validation

In this section, we provide an overview of our system implementation followed by a dis-

cussion evaluating our presented approach. As stated earlier, our research focuses not on

developing a new tool or technique in attempt to support a specific maintenance activity.

Instead, our goal is to automatically integrate implicit and explicit knowledge resources

through the use of queries and automated reasoning within a maintenance process. Within

our system, maintainers can directly query the KB to explore knowledge or utilize prede-

fined views and queries to automatically establish a task (story) specific context.

29 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Fig. 9 System architecture

6.1 System Overview

We have developed an environment that supports our unified model built on a

client/server architecture with both the server and the client being implemented as Eclipse

plug-ins (Figure 9).

Ontology, persistent storage management, and reasoning services are provided through

the server application. They are implemented in Java and built on top of the Jena Semantic

Web Framework4. Jena provides the backend repository for both concepts (TBox) and

instance data (ABox). Leveraging Jena’s persistent storage support, the model storage can

be based on files or a relational database. TBox management is centralized on the server

to ensure consistency, quality of the ontology design, and standardization of the KB. Rea-

soning services are provided by Racer [14], which provides highly optimized TBox and

ABox reasoning capabilities.

4 http://jena.sourceforge.net/

30 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

The client provides the foundation for our visual integration, supporting the interaction

and linking between the maintenance activities and the relevant resources. Similar to more

traditional database applications, ABox management is provided through the client. The

client also provides the story interface that is part of the local process manager. The con-

textual process views are established through separate process views and resource advi-

sors. The story manager also integrates both the contextual navigation through the KB

(through pre-defined queries), as well as the query interface for user defined queries.

6.2 Process Support

A successful process-centered support system is based on the premise that the right infor-

mation should be made available at the right time in the right format. Achieving this pre-

mise depends greatly on the available knowledge resources and the specific task context.

From a software maintainer’s perspective, the challenge is specifically the need to adjust

both information and context in real time to the current process task-step being performed.

Our process environment supports such traceability between the involved process steps

and other supporting resources (e.g., artifacts, maintainers, techniques, and tools).

The story (process) manager is built on top of the ontology manager infrastructure. The

story manager provides for the user both the context and the interactive guidance during

the evolution task. The story manager coordinates the protagonist (the user) to dynamical-

ly author the specific evolution task solving story. In addition, the story management is

also responsible for providing an intuitive visual metaphor to vividly model the whole

task solving process. The different aspects of the story metaphor can be mapped with the

help of existing visualization metaphors (like static and dynamic 2D and 3D graphs, tex-

tual representations and different types of animation). During the process, the story man-

ager is monitoring events and triggers that might affect the storyline of the evolution

process, e.g., user or system activities.

31 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

Fig. 10 Maintenance request and linked views

A software maintenance process typically originates from a MR. Similarly, our envi-

ronment will initiate the maintenance process with a request view (Figure 10). The MR

view also establishes the initial process context and the traceability between the process

and the available resources. The context sensitivity levels are supported through custo-

mizable views and abstraction hierarchies that both support filtering and extracting de-

tails-on-demand [33]. The process supporting queries establish the link to the KB and

automatically populate the relevant resource views. The process and its task-steps are

supported through a workflow like view and a tree structure view, with both of them

adopting similar techniques as the IBM Rational RMC [17]. Those views allow for easy

process navigation by expanding/collapsing of process task-steps and their details. For a

specific task-step, we also support context switching to the advisor views that provide

suggestions on what relevant knowledge resources and other related task-steps might be

applicable in the given context.

32 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

6.3 Initial Evaluation and Discussion

Our research contains two main contributions: The OWL-DL KB capturing both process

and knowledge resources, as well as an environment utilizing the KB. The use of OWL-

DL as the ontology language to formalize the KB provides additional benefits compared

to less formal knowledge and information sharing approaches. Our constructed ontologi-

cal representation can be used with many available OWL-DL tools such as Protégé5 (on-

tology management), Pellet6 (ontology reasoner), and SWOOP7(ontology brows-

ing/debugging). Our model design has been evaluated with Pellet and Racer [14] for mod-

el consistency and reasoning support. Management and evolution of the KB is supported

by existing ontology management tools such as Protégé.

In addition, the visual tool environment we developed promotes the use and adaptation

of process models and is not limited to maintenance process models. Our environment

provides maintainers with process guidance without the need for a prior knowledge about

formal ontologies or OWL. Maintainers can use and customize both the standard process

as well as the traceability between the context relevant knowledge, through the different

advisor views and pre-defined or customizable queries.

It has to be noted that one of the main challenges for our approach is the population of

the KB. In this respect, our approach does not differ from any existing knowledge base or

data mining approach. We are currently following two main strategies to address this chal-

lenge. In the first phase, we are performing several case studies in collaboration with De-

fence Research and Development Canada (DRDC) Valcartier. The case studies are per-

formed in a controlled environment that restricts both the type of task performed (compo-

nent substitution) and the resources to be modeled. This limited knowledge corpus is suf-

ficient to provide an initial proof of concept that our ontological representation can cap-

ture the relevant information and model the context levels. To date, we have conducted

5 http://protege.stanford.edu/
6 http://pellet.owldl.com/
7 http://www.mindswap.org/2004/SWOOP/

33 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

two component substitution case studies on Debrief8, a medium size open source applica-

tion for the analysis and reporting of maritime exercises. Both of the maintenance tasks

were related to substituting a non-secure XML data exchange component within Debrief

by open source components that perform XML encryption.

Case study settings

We selected 8 graduate students from our Software Maintenance Research Group at Con-

cordia University to participate in both case studies in a controlled environment. The

technical and maintenance experience levels varied significantly among the students.

Their Java programming experience ranged from 2 to 8 years and their industrial mainten-

ance experience from no previous experience to several years as senior programmer. A

commonality among all students participating in the case study was that they had no pre-

vious experience using or maintaining Debrief.

For the case studies, 30 software maintenance relevant tools were selected and installed on

the computers in two software engineering labs accessible to the students. The software

packages included source code analysis tools, software measurement tools, software visu-

alization tools, and other software maintenance support tools. Information related to these

tools was manually collected and populated within the KB. Since most of the students

were unfamiliar with these tools, tutorials and manuals were provided to allow them to

familiarize themselves with the tools prior to using them in their assigned maintenance

task.

 Artifacts that were made available with Debrief included source code, class files, a de-

tailed analysis document, a system design document, user guide and tutorials.

The intent of the first case study was twofold: firstly to validate whether our unified

model was capable to sufficiently and correctly capture the information required to sup-

port a software maintenance tasks. Secondly, the case study was used to collect some

8 http://www.debrief.info/index.php

34 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

user, tool and feedback data from the case study to allow for an initial population of the

ontology.

Given the results and feedbacks collected from the second case study, we were able to

extend and refine our ontological model to improve its ability to support more task specif-

ic queries. The collected feedback was also used to further populate the ontology, which

included after the second case study 295 concepts, 129 relationships and 765 instances.

The studies provided us with a proof of concept that our approach is capable of provid-

ing additional benefits to maintainers. It was in particular the integration of process, task

and resource relevant information that was well received. Ontology population is a major

concern at this point of time, since our process advisor support is driven by the quantity

and quality of the information available. The collected feedback confirmed our initial hy-

pothesis that considering associated knowledge resources without a particular mainten-

ance context does not provide sufficient guidance to assist a maintainer (protagonist) in

completing a given maintenance task.

During the second evaluation phase, we will further extended and generalize our envi-

ronment by including additional tasks and resources to the KB. Currently, we are facing

the challenge of ontology population and exploring different avenues to address this issue.

Potential solutions for the ontology population problem include the creation of an Internet

community portal and/or the concrete adoption of our tool within an industrial setting.

7. Related Work

As a knowledge representation language, OWL has already been applied in many applica-

tions of the software engineering domain such as model-driven software development

[29], a CMMI-SW model representation and reasoning for classifying organizational ma-

turity levels [41], reverse engineering tool integration [20], component reuse [16] and

open source bug tracking [1]. However, there exists only limited research in modeling

software maintenance and evolution using ontologies. Ruiz et al. [37] present a semi-

35 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

formal ontology based on REFSENO for managing software maintenance projects. They

consider both the static [23] and dynamic aspects such as workflow in software mainten-

ance processes. The ontology was constructed using KM-MANTIS, a knowledge man-

agement system with the goal of improving maintenance project management. However,

no implementation or usage details are provided. Kitchenham et al. [23] designed a UML

based ontology for software maintenance to identify and model factors that affect the re-

sults of empirical studies. Their goal differs from ours by utilizing ontologies to establish

a common understanding context for empirical studies. Furthermore, the resulting ontolo-

gy was not formally modeled and no reasoning services were used to infer implicit know-

ledge. Dias et al. [11] extended the work by Kitchenham by applying a first order logic to

formalize knowledge involved in software maintenance. Although they stated that it is

worthwhile to provide a knowledge base, they only identified knowledge relevant to the

software maintenance domain without actually providing a concrete KB implementation.

González-Pérez and Henderson-Sellers present a comprehensive ontology for software

development [12] that includes a process sub-ontology modeling, among others, tech-

niques, tasks, and workflows. The ontology is presented using UML diagrams. No im-

plementation is given, implying that the authors also have not examined the integration of

their ontology in an actual software development process.

Common to all of these approaches is that their main intent is to support in one form or

another the conceptualization of knowledge, mainly by standardizing the terminology and

to support knowledge sharing based on a common understanding. These approaches fall

short on adopting and formalizing a process model to support traceability links between

the process and the knowledge resources in the KB. They also lack the use of reasoning

services to infer implicit knowledge. To the best of our knowledge, there exists no pre-

vious work that focuses on developing a formal OWL-DL software maintenance process

model and utilizes automated reasoning to establish the links between process activities

and involved resources.

The collaborative nature of software engineering has more recently been addressed by

introducing Wiki systems into the SE process. Semantic Wiki extensions like Semantic

36 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

MediaWiki [53] or IkeWiki [54] add formal structuring and querying extensions based on

RDF/OWL metadata. These works can be seen as complementary to our approach, in

that they can support the creation and visualization of the developed knowledge base.

However, by themselves they do not address the main concern covered by our approach,

delivering active and context-sensitive guidance to an individual developer for his current

task, based on knowledge both explicitly encoded and implicitly derived by actions per-

formed by other developers.

Compared to other modeling approaches such as Model Driven Architecture (MDA) and

related modeling standards (e.g., UML/MOF [58] or the Eclipse Modeling Framework

(EMF) [59]) our approach differs fundamentally in its objective. (1) These modeling

approaches focus on forward engineering, i.e., producing code from abstract, human-

elaborated specifications, following a strict modeling process. We, on the other hand,

focus on software evolution, where one has to extract, model, integrate and utilize

knowledge from various and often not well defined resources. (2) MDA and EMF both

focus on modeling well defined processes, in an attempt to derive complete models. Our

approach on the other hand is based on an open world assumption, focusing on the

integration of existing and newly gained knowledge and by making this knowledge

available to the end-user.

With regard to tool support for process guidance, recent work by IBM Rational on its

Method Composer (RMC) [17] and Process Advisor [39] are the closest related approach-

es to our research. RMC is a process management tool for authoring, configuring, and

publishing development process like the Rational Unified Process (RUP). The IBM Ra-

tional Process Advisor integrates RUP process guidance within the context of software

development tools [39]. Due to the required tool customization, the contextual guidance

through the Process Advisor is currently only supported within a selected set of Rational

tools. Our approach has similarities in process modeling and customization with the RMC,

37 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

due to the fact that we adopted parts of the Rational Method Composer, namely EPF9 and

GEF10, to graphically model and customize the IEEE maintenance process. However, our

approach differs in its overall motivation. These differences can be summarized as fol-

lows: (1) The Process Advisor focuses on the integration of RUP based process guidance

into the context of several Rational development tools11 by requiring a customization of

these tools to support the Process Advisor. Our focus instead is on the general knowledge

integration between process activities and resources by creating links between process

activities and resources which are not limited by a set of specific tools. (2) We focus on

knowledge integration rather than tool integration by providing a flexible and dynamic

knowledge management. Within our approach, any newly gained knowledge (process

and/or resources) automatically becomes an integrated part of our model. Furthermore, we

support reasoning services that can infer implicit knowledge not explicitly modeled in the

KB. In comparison, the Process Advisor is a more static approach that requires a manual

adaptation of tools to be able to take advantage of the Process Advisor and its context

sensitive guidance.

8. Conclusions and Future Work

Software evolution is a major part in terms of effort and cost involved in any software life

cycle. Our work promotes the use of both formal ontology and automated reasoning in

software evolution by providing a formal DL-based ontological representation for the

modeling of both software evolution processes and resources relevant to support these

processes. We have adopted the IEEE software maintenance standard to illustrate model-

ing of software evolution processes using a formal ontological representation. The unified

ontological representation allows for the integration of these knowledge resources and

9 http://www.eclipse.org/epf/
10 http://www.eclipse.org/gef/
11 http://www-128.ibm.com/developerworks/rational/products/rup

38 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

establishes traceability links between the process and the resources. The flexibility and

extensibility of the ontologies also enables the evolution and enrichment of the knowledge

base. We introduce a story based software evolution process model to provide a metaphor

that supports the interaction and context visualization between the process model, mod-

eled resources, and users. The visual format for the task story model is still under devel-

opment. As part of our future work, we will conduct further case studies to enrich our

current ontologies and optimize our current tool in supporting particular software evolu-

tion process models.

Acknowledgement:

This research was partially funded by DRDC Valcartier (contract no. W7701-

052936/001/QCL).

References

[1] Ankolekar, A., “Supporting Online Problem –Solving Communities with the Semantic
Web”, Ph.D.Thesis, Carnegie Mellon University, Pittsburgh, PA, 2005.

[2] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Schneider, P.P., “The
Description Logic Handbook”, Cambridge University Press, 2003.

[3] Baader F., Horrocks I., and Sattler U., “Description logics as ontology languages for the
semantic web”, In Dieter Hutter and Werner Stephan, editors, number 2605, Lecture Notes
in Artificial Intelligence, pages 228-248. Springer, 2005.

[4] Ballim, A. and Wilks, Y., “Artificial Believers: The Ascription of Belief”, Lawrence
Erlbaum, 1991.

[5] Basili, V.R., “Viewing Maintenance as Reuse Oriented Software Development”, IEEE
Software, pp.19-25, 1990.

[6] Bennett, K.H. and Rajlich, V.T., “Software Maintenance and Evolution: a Roadmap”,
Proceedings. of the Conference on the Future of Software, 73-87, 2000.

[7] Berners-Lee T., Hendler J., and Lassila O., “The Semantic Web”, Scientific American, 284
(5):34-43, 2001.

[8] Brooks, R., “Towards a theory of the comprehension of computer programs”, Internation-
al Journal of Man-Machine Studies, 18:543-554, 1983.

39 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

[9] Bruner, J., “Acts of Meaning”, Cambridge, MA: Harvard University Press, 1990.

[10] CMMI for Development. Version 1.2, Technical Report CMU/SEI-2006-TR-008, Carnegie
Mellon, Software Engineering Institute, USA, 2006.

[11] Dias, M. G. B., Anquetil, N. and Oliveira, K. M., “Software Maintenance Ontology”,
chapter 5 in Caleor, C., Ruiz, F., and Piattini, M. (Eds.), Ontologies for Software Engineer-
ing and Software Maintenance, Springer, pp.153-173, 2006.

 [12] Gershon, N., Page, W., “What storytelling can do for information visualization”, CACM
8(44), pp.31-37, 2001.

[13] Gruber, T. R.: “A Translation Approach to Portable Ontology Specifications”, Knowledge
Acquisition, 5(2):199-220, 1993.

[14] Haarslev, V. and Möller, R., “RACER System Description”, In Proc. of Int. Joint Confe-
rence on Automated Reasoning (IJCAR'2001), Springer-Verlag, 701-705, 2001.

[15] Hartland, E.S., “The science of fairy tales”, Walter Scott, 1891.

[16] Happel, H.-J., Korthaus, A., Seedorf, S., and P.Tomczyk, “KOntoR: An Ontology-enabled
Approach to Software Reuse”, 18th International. Conference on Software Engineering and
Knowledge Engineering (SEKE), San Francisco, July, 2006.

[17] Hauner, P., ”IBM Rational Method Composer: Part 1: Key concepts”, IBM report, De-
cember, 2005.

[18] Horrocks, I., Patel-Schneider, P. F., and Harmelen, F., “ From SHIQ and RDF to OWL:
The Making of a Web Ontology Language”, Journal of Web Semantics, 1(1):7-26, 2003.

[19] International Standard - ISO/IEC 14764 IEEE Std 14764-2006 Software Engineering,
Software Life Cycle Processes, Maintenance, ISBN: 0-7381-4961-6, 2006.

[20] Jin, D. and Cordy, J. R., “Ontology-Based Software Analysis and Reengineering Tool
Integration: The OASIS Service-Sharing Methodology”, 21st IEEE International Confe-
rence on Software Engineering (ICSM), 2005.

[21] Johnson-Laird, P.N., “Mental models: towards a cognitive science of language, inference
and consciousness”, Cambridge, Mass. Harvard University, 1983.

[22] Keller, I. M., Madachy, R. J., and Raffo, D. M., “Software Process Simulation Modeling:
Why? What? How?”, Journal of Systems and Software, Vol.46, No.2/3, 1999.

[23] Kitchenham, B., Travassos, G.H., Mayrhauser, A.V., Niessink, F., Schneidewind, N.F.,
Singer, J., Takada S., Vehvilainen R., and Yang H., “Towards an Ontology of Software
Maintenance”, Journal of Software Maintenance and Practice, 11(6), 365-389, 1999.

[24] Kroll, P., Kruchten, P.,“The Rational Unified Process Made Easy: A Practitioner's Guide
to the RUP”,Addison Wesley, 2003.

[25] Letovsky, S., “Cognitive processes in program comprehension”, In Empirical Studies of
Programmers, pp. 58-79, Ablex Publishing Corp. 1986.

[26] Mayhauser A.V., Vans A.M., “Program Comprehension during Software Maintenance and
Evolution”, IEEE Computer, pp44-55, Aug.1995.

40 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

[27] Meng,W. , Rilling, J., Zhang, Y., Witte R., and Charland, P., “An Ontological Software
Comprehension Process Model”, 3rd International Workshop on Metamodels, Schemas,
Grammars, and Ontologies for Reverse Engineering (ATEM), 28-35, 2006.

[28] Niles, I. and Pease, “A.Towards a Standard Upper Ontology”, Proc. of the 2nd Int. Conf.
on Formal Ontology in Information System (FOIS), Maine, 2001.

[29] Ontological Driven Architectures and Potential Uses of the Semantic Web in Systems and
SE, www.w3.org/2001/sw/BestPractices/SE/ODA/, (accessed May, 2007).

[30] Pacione, M.J., Roper, M., Wood, M., "A Novel Software Visualisation Model to Support
Software Comprehension", 11th Working Conference on Reverse Engineering (WCRE
2004), pp.70-79, 2004.

[31] Phillips, M.A. and Huntley, C., “Dramatic A New Theory of Story”, 5th Edition, Screen-
play Systems Inc., 2001.

[32] Plowman, L., Luckin, R., Laurillard, D., Stratfold, M., Taylor, J., “Designing multimedia
for learning: narrative guidance and narrative construction”, Proc. of the SIGCHI confe-
rence on Human factors in computing systems: the CHI is limit, ACM Press, May, 1999.

[33] Rilling, J., Meng, W., Chen, F. and Charland, P., “Software Visualization – A Process
Perspective”, 4th IEEE International Workshop on VISSOFT, Banff, Canada, 2007.

[34] Riedl, M. O., Young R. M., “An Intent-Driven Planner for Multi-Agent Story Generation”,
Proceedings of the 3rd International Conference on Autonomous Agents and Multi Agents
Systems, July, 2004.

[35] Riedl, M.O., Yong, R.M., “From Linear Story Generation to Branching Story Graphs”,
IEEE Computer Graphics and Applications, IEEE Computer Society, 2006.

[36] Riva C., "Reverse Architecting: An Industrial Experience Report", Proceedings of 7th IEEE
Working Conference on Reverse Engineering (WCRE 2000), pp. 42-52, 2000.

[37] Ruiz, F., Vizcaíno, A., Piattini, M., and García F., “An Ontology for the Management of
Software Maintenance Projects”, International Journal of Software Engineering and
Knowledge Engineering, 14(3), 323-349, 2004.

[38] Shneiderman, B., “Software Psychology: Human Factors in Computer and Information
Systems”, Winthrop Publishers, 1980.

[39] Smith, J., Popescu, D., and Bencomo, A., “IBM Rational Process Advisor: Integrating the
Software Development Process with IBM Rational Developer and Tester V7 tools”, IBM
report, December, 2006.

[40] Sowa, J. F., “Knowledge Representation: Logical, Philosophical, and Computational
Foundations”, ISBN 0 534-94965-7, Brooks/Cole Publishing Co., Pacific Grove, CA,
USA, 2000.

[41] Soydan, G. H. and Kokar, M., ”An OWL Ontology for Representing the CMMI-SW Mod-
el”, Workshop on Semantic Web Enabled Software Engineering (SWESE), 2006.

41 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

[42] Storey, M.-A. D., ”Theories, Methods and Tools in Program Comprehension: Past,
Present, and Future”, In Proceedings of 13th International Workshop on Program Compre-
hension (IWPC 2005), Missouri, USA, 181-191, 2005.

[43] Storey, M.-A. D., Sim, S.E., and Wong K., “A Collaborative Demonstration of Reverse
Engineering Tools”, ACM SIGAPP Applied Computing Review, Vol. 10, Issue 1, 18-25,
2002.

[44] Web Ontology Language, http://www.w3.org/2004/OWL/, (accessed: June, 2007).

[45] OWL Web Ontology Language Reference, W3C Recommendation,
http://www.w3.org/TR/owl-ref (accessed June 2007).

[46] Wongthongtham, P., Chan,g E., Dillon, T.S., “Towards “Ontology”-based Software Engi-
neering for Multi-site Software Development”, 2005 3rd IEEE Int. Conference on Industrial
Informatics (INDIN), 2005.

[47] M.-A. D. Storey , K. Wong , H. A. Müller, How do program understanding tools affect
 how programmers understand programs?, Science of Computer Programming, v.36 n.2-3,
 p.183-207, March 2000[

[48] A.von Mayrhauser , A. Marie Vans, Program Comprehension During Software
Maintenance and Evolution, Computer, v.28 n.8, p.44-55, August 1995

[49] M. M. Lehman , L. A. Belady, Program evolution: processes of software change,
Academic Press Professional, Inc., San Diego, CA, 1985

[50] P. Wongthongtham, E. Chang, T.S. Dillon, I. Sommerville (2007) ‘Software Engineering
Ontology – Instance Knowledge Part I’, International Journal of Computer Science and
Network Security, USA

[51] K. Bontcheva, M. Sabou, Learning Ontologies from Software Artifacts: Exploring and
Combining Multiple Sources, In Proceedings of the 2nd International Workshop on Seman-
tic Web Enabled Software Engineering (SWESE 2006).

[52] Software Engineering Coordinating Committee. SWEBOK, version 2004,
http://www.swebok.org.

[53] M. Krötzsch, D. Vrandečić, and M. Völkel. Semantic MediaWiki. In I. Cruz, S. Decker, D.
Allemang, C. Preist,D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors, The Seman-
tic Web – ISWC 2006, volume 4273 of LNCS, pages 935–942. Springer, 2006.

[54] S. Schaffert. IkeWiki: A Semantic Wiki for Collaborative Knowledge Management. In
WETICE, pages 388–396. IEEE Computer Society, 2006.

[55] M. Greyck B. Dias, N. Anquetil, K. Marcal de Oliveira, “Organizing the knowledge used in
Software Maintenance”, Journal of Universal Computer Science, Vol.9, No.7, 2003

[56] Jens H. Jahnke and Andrew Walenstein “Reverse Engineering Tools as Media for Imper-
fect Knowledge,”, IEEE Working Conference on Reverse Engineering, (WCRE'2000), pp
22-31.

42 Juergen Rilling, Wen Jun Meng, René Witte, Philippe Charland

[57] R. Pressman, “ Software Engineering: A Practioner’s Approach, 6th Edition, McGraw Hill
College, ISBN-10:007301933X, 2005.[58] OMG – Unified Modeling Language;
/www.uml.org/ (last accessed 2/2008)

[59] Eclipse and Open Development Platform, www.eclipse.org (last accessed 2/2008)

[60] Open Management Group (OMG) – Unified Modeling Language, www.uml.org (last ac-
cessed 2/2008)

[61] González-Pérez, C. and Henderson-Sellers, B., “An Ontology for Software Development
Methodologies and Endeavours”. Chapter 4 in Caleor, C., Ruiz, F.and Piattini, M. (Eds.),
Ontologies for Software Engineering and Software Maintenance, Springer, pp. 123-151,
2006.

