Agents and Databases: Friends or Foes?

Peter C. Lockemann, René Witte
Fakultdt fiir Informatik, Universitdit Karlsruhe
lockeman|witte@jipd.uka.de

Abstract

On first glance agent technology seems more like a
hostile intruder into the database world. On the other
hand, the two could easily complement each other,
since agents carry out information processes whereas
databases supply information to processes. Nonethe-
less, to view agent technology from a database per-
spective seems to question some of the basic para-
digms of database technology, particularly the premise
of semantic consistency of a database. The paper ar-
gues that the ensuing uncertainty in distributed data-
bases can be modelled by beliefs, and develops the
basic concepts for adjusting peer-to-peer databases to
the individual beliefs in single nodes and collective
beliefs in the entire distributed database.

1. Introduction

Agents and databases seem to be worlds apart.
Agent technology has for a long time been the domain
of distributed artificial intelligence (DAI), with a focus
that extends beyond mere technical characteristics to-
wards “soft” properties such as social behavior. Data-
base technology is an engineering discipline that cen-
ters around persistent storage of vast and ever growing
repositories of information.

But agents and databases also seem like ideal com-
plements: Agents carry out information processes
whereas databases supply information to processes.
What’s more, agent communities seem a natural model
for loosely coupled distributed systems, while database
technology sees more and more of its mission in the
support of highly distributed information systems.

Nonetheless, there has been little collaboration be-
tween the two worlds so far. Although agents must
carry a view, however limited, of their environment
and, hence, should include something akin to a small
database, database technology does not seem to have a
part in agent technology. And database technology
seems to have little love left for a technology that deals

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

with elements of unpredictable and intangible behav-
ior.

Database technology is a mature technology. Agent
technology seems to come of age. Consequently, there
is every reason to study whether the combination of
the two provides better value, how one can benefit
from the other, or how one affects the other. This pa-
per will concentrate on one direction in the question,
the effect that agent technology has on database tech-
nology.! To study the effect the paper will be divided
into two main parts: A first part giving a short outline
of the pertinent properties of agents and agent commu-
nities, and a second part examining whether adjust-
ments must be made to database technology and what
these are.

Part I: Agents

2. Agent properties

The prevailing characterization of software agents
comes from distributed artificial intelligence and seems
well agreed upon. We take the characterization from
the seminal book by Wooldridge ([32], for further de-
tails see also [10] and [30]). Wooldridge differentiates
between minimal properties, i.e., properties that each
agent ought to have, and those of intelligent agents.

2.1. Minimal properties

He lists as the minimal properties the following.

(1) A software agent is a computer system that is
situated in some environment. If this sounds trivial
because it applies to any piece of software, one has to
read the fine print, so to speak, in Wooldridge’s book
where he adds that “like its real-world counterparts,

! Part of this work was supported by the German na-
tional research initiative on “Intelligent software
agents and business application scenarios” (DFG
SPP 1083).

YF]',F.

COMPUTER
SOCIETY

agents do not dissolve once a task has been finished,
rather the interaction is an ongoing, non-terminating
one.” Also, “some” is used in the sense of “special”
and, hence, the property includes the characterization
of the agent restricting itself to a certain domain. Fig-
ure 1 symbolizes the continuous lifecycle of an agent
sensing the environment and acting on the environ-
ment.

(2) A4 software agent offers a useful service. Its be-
havior can only be observed by its external actions, its
internal processes remain encapsulated. This is a
property that does not differ significantly from the no-
tion of software component, but at least it defines a
bridge to a software engineering technology.

(3) 4 software agent is capable of autonomous ac-
tion in its environment in order to meet its design ob-
Jectives, i.e., to provide its service. Indeed, this prop-
erty sets agents apart from other software: The agent is
able to act even without the intervention of humans or
other systems, and it has a certain degree of latitude in
performing a task, e.g., the liberty to decline the task or
pose conditions, or to break off its work, perhaps in-
curring some penalty, or to decide when to start or
complete work. From an outsider’s standpoint the
property seems to confer on agents unpredictable, or
non-deterministic (if not outright chaotic) behavior.

(4) The autonomy of a software agent is determined
by its own goals, with goal deliberation and means-
end assessment as parts of the overall decision process
of practical reasoning. The property can be seen as a
kind of counterbalance to property 3, insofar as it in-
troduces some predictability into an agent’s behavior:
The agent’s own goals influence its decision process
which of the potential actions it should perform and
when.

sensing

acting

ENVIRONMENT

Figure 1 Agent Lifecycle

2.2. Intelligent agents

Non-deterministic behavior of software is not some-
thing that is particularly appreciated in software engi-
neering. It may offer some strength, though, if the en-
vironment, due to its complexity, may itself appear

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

non-deterministic to the agent. Hence, following
Wooldridge we define:

An intelligent software agent is a software agent
capable of operating in a non-deterministic environ-
ment.

Wooldridge states a number of consequences.

(5) An intelligent software agent is reactive, that is,
it continuously perceives its environment, and re-
sponds in a timely fashion to changes that occur. The
property reflects two obligations for the agent: To ob-
serve the environment for requests or other changes
that require some reaction, and indeed to show a reac-
tion where one is expected.

(6) An intelligent software agent achieves an effec-
tive balance between goal-directed and reactive be-
havior. The need for reactivity seems to contradict
autonomy. In general, though, there may be several
ways on how to respond, or the need to respond may
even be in conflict with the goals. Consequently, the
response should be consonant with the agent’s goals.

(7) An intelligent software agent may be proactive,
that is, take the initiative in pursuance of its goals. The
agent may also take its own initiative to effect changes
in the environment in order to further its own goals.

(8) An intelligent software agent may have to pos-
sess social ability, that is, should be capable of inter-
acting with other agents to provide its service. Agents
may become clients of other agents, for example when
they cannot solve a given problem on their own but
must delegate part of the problem solution to other
agents.

One may argue that goal deliberation and means-
end assessment, e.g., plan selection is fairly meaning-
less unless the agent is able to learn from past experi-
ences in order to improve on future solutions. None-
theless, Wooldridge treats

(9) An intelligent software agent may be able to
learn.
as an optional property.

3. Multiagent systems

The idea behind multiagent systems — entire collec-
tions of agents — is that the whole is more than the sum
of its parts [7, 32]. Consequently, there must be a pur-
pose behind the system. In a multiagent system the
purpose is the pursuit of an overall goal. Under the
assumption that the individual agent is self-interested
and pursues its own, low-level goals, Weiss ([30], p.3)
lists four major characteristics of multiagent systems:

1. Each agent has just incomplete information
and is restricted in its capabilities.

2. System control is distributed.

3. Data is decentralized.

4. Computation is asynchronous.

YF]',F.

COMPUTER
SOCIETY

Item 1 simply states that a single agent’s contribu-
tion to the overall goal is limited. Item 2 suggests that
a multiagent system follows a peer-to-peer organiza-
tion. Item 4 implies that agents are only loosely cou-
pled, that is, interact by message exchange, and item 3
that much of the information exchange is to bring the
agents’ data up-to-date.

The presence of a shared (high-level) goal requires
some sort of organization to overcome the individual-
ism of the agents. Message exchange is the primary
means for the agents to cooperatively pursue the high-
level goals. Since there is no central authority that en-
forces the high-level goals, the agents must agree
among themselves what the rules of engagement are.
These rules define their interaction protocol.

Classical interaction protocols in multiagent sys-
tems are the blackboard system and the contract net
protocol. The former requires — at least in principle — a
centralized blackboard and control component, and
problem solving is purely sequential. Much better
suited to self-organization is the contract net protocol
because there is no central authority, and agents may
act as manager at one time and as contractor at another,
or even simultaneously as when a contractor for a spe-
cific task acts as a manager by soliciting the help of
other agents in solving parts of the task.

Although there is no natural central authority in a
multiagent system one can easily introduce one. For
example, why should agents not decide to entertain a
central database that could establish a common view of
the environment? The way to do this in a multiagent
system is to choose one of the peers to manage one,
and let them enter into agreements among themselves
so that they will supply the necessary data to the cho-
sen peer. Likewise, agents could agree on the use of a
blackboard system and would have to install a peer
agent for controlling the blackboard. We refer to such
agents with central authority as resource agents. How-
ever, the more responsibilities we shift to resource
agents the lesser autonomy is left to the individual
agents.

Part II: Databases

4. Agents and databases

Agents must carry a view, however limited, of their
environment as the basis for decision making. Due to
the long-lasting agent lifecycle the view must be main-
tained over time and even across disturbances, i.e., the
view should be durable. Consequently, there are in the
individual agent all the ingredients of a local database
no matter how small, and if we take an entire commu-

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

nity of agents that form the complete system what we

have is a highly distributed database.

Now, as we saw before an agent certainly is much
more than a database. However, for the purpose of
studying the effects of agents on database technology
we abstract agents to just that, local databases. The
first question is how the abstraction from the agent
properties is reflected in their databases, i.e., whether
these are ordinary databases or databases with special
qualities, and hence whether a multiagent system pre-
sents us with a distributed database that has distinctive
characteristics. From what was said in Part [we submit
as characteristics:

e Multiagent systems form a huge, highly distrib-
uted database where each constituent database is
small with an extremely limited view of the mini
world.

e The database is an open system where constituent
databases may come and go.

e The constituent databases are fully autonomous,
there is no central control.

e Due to interaction the constituent databases may
overlap in content.

e The activities of agents, and their cooperation, is
centered around their self-interest in the form of
individual low-level goals and collective high-
level goals.

e The constituent databases may show nondeter-
ministic behavior by responding with delay or not
at all to input and with answers that are only pre-
dictable within limits, and by taking unpredictable
initiatives on their own to interact with their envi-
ronment.

On first glance these characteristics seem to conform

to those of peer-to-peer databases. These have the

properties [1]:

no central database,

no peer has a global view of the system,

peers are autonomous,

no central coordination,

global behavior emerges from local interactions,

all existing data and services should be accessi-

ble,

e peers and connections are unreliable.

And indeed, agent and peer-to-peer organizations

agree in several fundamental respects: Autonomy of

the peers, lack of a global view, decentralized control,
data distribution, global behavior as a result of indi-
vidual interactions, and variable connectivity. But
there is more to the agent world: Non-deterministic
and at best qualitatively predictable behavior of the
peers with a concomitant effect on the interactions and
the resulting behavior of the entire system. Further-
more, peer-to-peer information systems and agent

YF]',F.

COMPUTER
SOCIETY

systems pursue complementary objectives: For the
former the predominant objective is discovering in-
formation [1, 2], for the latter information is just the
means to act towards an objective. Therefore, we do
need to take a fresh look at the database world.

5. Consistency, uncertainty and beliefs

5.1. Consistency and uncertainty

The central paradigm of database technology is se-
mantic consistency: Databases should always give an-
swers that reflect true states of the real world. Database
systems guarantee semantic consistency through trans-
actions that ensure that any new state is a true and cur-
rent image of the outside world.

But is semantic consistency a realistic proposition
in a large-scale peer-to-peer organization? After all, no
agent is ever supposed to observe the entire environ-
ment, and even collectively the agents will never ob-
serve the environment at the same instance in time.
Hence, there is neither individually nor collectively a
consistent image of the environment. This reminds one
of the uncertainty principle in physics which states that
predictions can be made only within certain probabili-
ties (see [11]). Consequently, what such systems need
to incorporate is what Pearl calls uncertainty manage-
ment [23].

On first glance, uncertainty management seems to
reflect the needs of peer-to-peer organizations in gen-
eral. But that is not the common view of peer-to-peer
systems. The literature never treats peer-to-peer sys-
tems as a collective if distributed database. Rather the
individual members are considered completely inde-
pendent and the emphasis is on finding the desired
information. In multiagent systems, on the other hand,
the members cede some of their autonomy to the
common good and, hence, need to base their collabora-
tion on some common understanding of the real world.

5.2. Uncertainty and beliefs

Taken as a whole, a distributed peer-to-peer data-
base is inherently uncertain. Or in terms of agents as
the peers, we cannot expect each individual agent to
share a common, unanimous view of the world. On the
other hand, the common interests of agents will moti-
vate them to pursue as much certainty as needed in
view of their self-interest. In recognition of this di-
lemma, agent-oriented programming relies on mental-
istic notions such as belief, desire, and intention. Ac-
cording to Bratman [6], “practical reasoning is a matter
of weighing conflicting considerations for and against
competing options, where the relevant considerations
are provided by what the agent desires (values) and

what the agent believes.” Beliefs are what the agent
knows or assumes to know about the outside world.
Intentions describe some future state of affairs the
agent will attempt to achieve. Desires reflect the
agent’s goals. The three notions give rise to the belief-
desire-intention (BDI) architecture which is at the
heart of many agent architectures (see Figure 2 for an
example).

sensor data
input ENVIRONMENT

BELIEFS PLANS
INTENTIONS

_/1/

actions
output

IDESIRES

Figure 2 BDI architecture in the Procedural Reasoning Sys-
tem PRS (from [32])

Consequently, we introduce beliefs as our model of
uncertainty. The database local to the individual soft-
ware agent reflects its beliefs about its environment
rather than a true and current image of the environ-
ment. Then, how could one interpret the collective,
distributed database of a multiagent system? After all,
beliefs may contradict one another, particularly if some
parts of the environment overlap in the various agents.

In the remainder we separate the two issues. We
first study how the individual agent will deal with its
beliefs. With that knowledge we proceed to study how
the multiagent system arrives at a collective belief. As
a working definition we refer to a distributed database
represented by a multiagent system as a belief data-
base if each software agent carries beliefs about its
environment, and the multiagent system has a collec-
tive belief that tolerates contradictions, but only to a
degree that does not inhibit the pursuit of the common
goal.

5.3. Querying beliefs

Beliefs are due to incompleteness of information. In
incomplete databases the closed-world assumption can
no longer hold. Hence, in querying an incomplete da-
tabase one must apply a process referred to as belief
reasoning [17] (or plausible reasoning [23]). In the
distributed world of a multiagent system the process

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

includes theorizing about the beliefs of other agents,
i.e., forming an opinion about the data visible to those
agents. Opinions may correspond to, e.g., optimistic,
firm, or cautious views. Another example of querying
incomplete databases is speculative computation [26].
Nonetheless, as the agents interact they may gain ex-
plicit knowledge of the beliefs held by other agents,
and should treat these as new observations that cause
them adjust their own local database.

6. Individual beliefs

6.1. Structuring beliefs

An agent must be able to store and manipulate his
own beliefs, but this alone does not suffice. In order to
collaborate on a task with other agents he needs to
incorporate their beliefs as well. However, these be-
liefs may be in conflict with his own beliefs due to
their owners' focus, status, or task.

Consequently, we need to allow an agent to hold his
own, unique view of the world, while at the same time
enabling it to incorporate beliefs from other agents in
order to collaborate on a task. In addition, an agent
may want to distinguish beliefs stemming from trusted
sources (like its master) and untrustworthy sources
(like a foreign e-commerce agent), assigning them dif-
ferent certainty or credibility values, which influence
subsequent reasoning. How can we achieve this?

A model for this scenario has been proposed by
Ballim and Wilks [3]: Beliefs are structured into view-
points for representing a particular agent's point of
view and fopics for collecting beliefs that are relevant
to a given subject. The two can be nested within each
other. For example, viewpoints can contain other view-
points such as the first agent's view of another agent's
viewpoint, or topics such as the agent's viewpoint on a
particular subject. Likewise, a topic can contain beliefs
pertaining to its subject, but also other viewpoints, e.g.,
when the subject is another agent or a class of agents.

The model is particularly elegant because an agent
can explicitly distinguish between its own beliefs on
certain topics and, at the same time, hold (possibly
conflicting) beliefs about what ke believes other agents
believe about the same topic, which are contained
within different, nested viewpoints. Moreover, the
agent may hold one viewpoint that is logically consis-
tent and a second with conflicting information about
the same topic. This enables an agent to collect and
maintain as much information as possible, attributing
them to their sources, without having to decide on a
“correct” set of beliefs, thereby losing information
prematurely.

6.2. Adjusting the belief structure

In the nested model a group of agents can dynami-
cally reconcile their beliefs about a given number of
topics in order to collaborate, temporarily giving up
some of their own beliefs within a nested viewpoint in
order to reach a consensus, but still holding on to these
beliefs in their primary view. This, however, requires
mechanisms for constructing as well as destructing
viewpoints.

An agent can create viewpoints about other agents’
views on a given topic through the process of belief
ascription. The default ascription rule is to assume that
another agent's view is the same as one's own. If there
is explicit evidence to the contrary, this knowledge
overrides the default rule, which may prompt the
agents to further reconcile their views. Ascription also
allows an agent to incorporate beliefs from another
agent.

Belief percolation deconstructs nested beliefs. For
example, a belief about another agent’s belief may be
acquired as one’s own belief by percolating it from a
lower level all the way up to the top-level viewpoint of
the agent.

The model does not prescribe a single approach for
the representation of beliefs: All formal language can
be adapted to model beliefs on certain topics. How-
ever, the processes of ascription and percolation will
need to be adapted for each representation formalism.

6.3. Belief revision

Updates in the classical database world focus on
one scenario, changes in the real world that impose
corresponding changes in the miniworld. However, as
Katsuno and Mendelzon [18] point out, this is not the
only situation where a change in an agent's beliefs is
warranted. When an agent makes a new observation,
or receives beliefs from other agents, the world didn't
necessarily change, he just obtained more information
about it. In this case he does not want to simply replace
his old set of beliefs with the new ones (what a simple
database update would do), but rather revise his set of
beliefs. This reflects what Harman states as “when
changing beliefs in response to new evidence, you
should continue to believe as many of the old beliefs as
possible” (quoted [31], section 9.1.2).

The field of belief revision distinguishes three op-
erators for such changes. Suppose an agent makes a
new observation. Then one action could be to simply
add the observation as a new belief no matter whether
it contradicts existing beliefs or not. The corresponding
operator is referred to as

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

e Expansion. Simply adds a new proposition. As a
consequence, the database may now contain in-
compatible information.

Note that the nested model of Section 6.1 allows for
conflicting views, hence expansion is indeed a useful
operator. More often, though, an agent will not tolerate
local contradictions but rather resolve them during
ascription or percolation. Two operators follow a reso-
lution principle:

e Revision. Adds a new proposition. If the informa-
tion is incompatible with the previous state then
older contradictory information is removed. Revi-
sion is non-deterministic because there may be
more than one way to restore compatibility, and it
may be unknown which is chosen.

e Contraction. Removes a proposition that until
now was considered valid. Contraction may trig-
ger further removals until no incompatible propo-
sition can further be derived. Hence, contraction
is also non-deterministic.

Revision and Contraction are not only non-
deterministic but also non-monotonic, but they do re-
move contradictions. Expansion preserves contradic-
tions, and this certainly makes sense if we wish to de-
fer resolving them, e.g., until the agent had a chance to
communicate with others. In general, though, no mat-
ter whether contradictions have been resolved or not,
the multiagent system as a whole may contain contra-
dictions. This raises the question of whether and when
a multiagent system should resolve global contradic-
tions to arrive at something like common beliefs.

6.4. Formalizing beliefs

What are suitable data models that allow to inquire
contradictory or incomplete information and that can
give specific semantics as well as a formal basis for the
update operators?

Classical databases are logically consistent: They
do not tolerate contradictions. They enforce logical
consistency by overwriting the old information, and to
the extent semantic consistency can be expressed in
terms of the database schema and consistency con-
straints the new information is checked against these.
For semantic consistency in general they rely on trans-
actions. Consequently, theories in classical databases
will offer little in support of beliefs.

Which requirements should a formalism for belief
databases meet? Our working definition in Section 5.2.
limits logical contradictions and semantic inconsisten-
cies to those that do not inhibit the pursuit of the com-
mon goal. The formalism, then, should cover both,

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

logical and semantics inconsistencies. Further, an
agent’s actions may have real-world effects. In this
case internal and external states must either not diverge
at all or only over limited time, like in debit/credit
transactions. Consequently, belief databases should
allow for a continuum from vague beliefs all the way
to rigid semantic consistency.

Wooldridge suggests modal logic as a formalism to
characterize, and reason about, the mental states of
agents as they act and interact [32]. He discusses two
models for interpreting the logic, epistemic logic and
possible-world semantics. Both exhibit certain short-
comings, particularly if — as a first step towards the
aforementioned continuum — one distinguishes be-
tween knowledge which must be non-contradictory,
and beliefs which may hold contradictions.

Another, more operational approach is due to Witte
[31]. In his representation formalism, individual beliefs
are modeled as fuzzy propositions over a discrete set
of (not necessarily numerical) values. A set of beliefs
places an elastic restriction on the possible interpreta-
tions of a variable. The fuzziness allows to explicitly
capture uncertainty, which allows to move from a no-
tion of strict consistency to a gradual consistency de-
gree. An agent can dynamically adapt its consistency
degree over time: arriving fresh onto a scene, it might
want to absorb many, possibly contradicting beliefs,
while being more strict for contexts established over a
longer period of time.

Fuzzified versions of the operators introduced
above allow to modify belief sets. A fuzzy revision
will admit new beliefs even when they are inconsistent
with the existing beliefs, if the remaining consistency
reaches at least the prescribed degree. A degree of one
implies complete consistency (as in a non-fuzzy
framework), a degree of zero admits even completely
inconsistent beliefs. Practical systems will deploy in-
termediate consistency degrees, where a revision re-
moves existing beliefs if they are too incompatible.
With these fuzzy operators, an agent will be able to
tolerate gradual inconsistencies while maintaining be-
liefs within the processes described above. As with the
dynamic construction of viewpoints, the decision on
just how much inconsistency can be tolerated within a
given situation is left to the agent while it interacts
with the environment.

Grounded in the tradition of base revision, the
model foregoes an inference operator in favor of
highly efficient algorithms that are suitable for large-
scale belief sets and frequent updates. This follows the
idea that modifications to a belief set within a database
will be primarily based on external processes rather
than internal inference engines.

Other approaches that merit closer inspection are
probabilistic databases, and Bayesian belief networks.

YF]',F.

COMPUTER
SOCIETY

7. Robustness, atomicity and correction
7.1. Failure models

Now that we have an idea how the individual agent
deals with its beliefs we can proceed to study how the
multiagent system arrives at a collective belief. We
demonstrate first that the issue is affected by another
central property of database systems, robustness in the
presence of disruptions, failures, incursions, or inter-
ferences.

Robustness must always be founded on a failure
model. The failure model states what it considers the
correct outcome of a service request and how the ser-
vice provider achieves correctness in the case of fail-
ure, perhaps with the help of the client.

In classical databases correctness is defined as se-
mantic consistency of the database. This leaves little
leeway to the failure model: We expect it to maintain
consistency under any circumstances. Since transac-
tions embody consistency, the failure model is trans-
lated into the property of transaction atomicity. As a
first step we return the database to the last state to be
known as consistent. If the transaction has a real-world
effect the recovered database may now diverge from
the state to which the external world progressed in the
meantime. The failure model must then be augmented
by compensation (undo real-world effect) or correction
(advance database to semantic consistency) (see, e.g.,
ConTracts [15]).

But what is a meaningful failure model if beliefs re-
place semantic consistency? We now lack a stringent
correctness criterion. What we gain instead is consid-
erable leeway as to which state to reach.

We will discuss below how to use the leeway with-
out deviating too far from classical database tech-
niques. In doing so we follow Pleisch and Schiper who
in a survey paper on (albeit mobile) agents make a
clear distinction between infrastructure failures and
unfavorable outcomes [24]. They point out that only
transactions — more specifically their property of atom-
icity — protect against both, the former by crash recov-
ery, the latter by transaction recovery. Less benignly
speaking, classical transactions fail to grasp the differ-
ence and apply one and the same failure model to both.

7.2. Infrastructure failure

Take first the individual agent. It seems incumbent
to return the agent to a well-defined state. The proven
way to do this is classical rollback. Consequently, an
agent should be transactional with regard to infrastruc-
ture failures. On the other hand, the agent started from
some belief rather than consistency. Hence, correction
seems unnecessary because the failure model should

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

tolerate uncertainty as long as it remains within the
confines of consistency as exemplified in Section 6.4. .
The agent may simply hold beliefs about the environ-
ment that are perhaps wrong in ways different from
before.

But what if failure occurred while several agents
were collaborating? In distributed transactions global
commit and global abort are enforced by some two-
phase commit protocol (2PC) variant. But 2PC proto-
cols run counter to the autonomy of its participants
because they temporarily tie the participants’ actions
together, sometimes even blocking them altogether.
Nor does the approach by Pleisch and Schiper seem
helpful because they guard against infrastructure fail-
ures in a system of mobile agents participating in a
distributed action by intruding into the agents’ auton-
omy: They replicate subactions on agents, with the
various commit protocols somehow enforcing exactly-
once execution.

This seems to leave as the only solution transac-
tional atomicity of the individual agents. But now there
is a real danger that beliefs start to disagree beyond
what seems tolerable. Consequently, infrastructure
failures should somehow be made known to the agents
in a collaboration, and leave it to them how to cooper-
ate in adjusting their local databases. A canonical ex-
tension of the model described above is to allow agents
to hold and manipulate beliefs about the infrastructure
as just another topic of their discourse world.

7.3. Unfavorable outcome

An outcome can only be called unfavorable if some
system component takes an action whose result has not
entirely been expected by its client, i.e., if the servicing
agent did not reach its objective. Hence the notion of
unfavorable outcome seems only to make sense if the
“failing” agent’s action is part of a distributed action.
Even classical transactions have doubts whether global
abort following, e.g., 2PC is the right answer, and re-
sort to, e.g., nested transactions. One may as well ar-
gue that the client simply held the wrong beliefs, and
all it has to do is to revise them. Consequently, there is
no need for any rollback on the part of the client but a
need for immediate revision.

7.4. Concurrency

Concurrency control in the form of isolation of
transactions is about control of unwanted interaction,
and surely we would like to minimize unwanted inter-
action in a multiagent system as well, or avoid it alto-
gether. But at what price?

Let us start with the individual agent. If it acts on
one request a time then there clearly is no problem. But

YF]',F.

COMPUTER
SOCIETY

nothing in the definition of agent keeps it from servic-
ing several requests at a time — after all it is autono-
mous and may thus decide to accept several requests. It
is also free to decide when and in which order to act on
them, or whether to run them concurrently or not.

Intuitively, one would like to avoid any interference
among concurrent requests, because if we did not then
the already existing indeterminism would grow to un-
manageable proportions. Consequently, for the indi-
vidual agent serializability of requests seems to remain
a good strategy in general. In particular, though, the
serial order, and, hence, the scheduling strategy may
have to reflect the agent’s goals. The agent may also
deem some kind of local interaction permissible — take
relative serializability as an example [29].

But what about the multiagent system as a whole?
Several agents interact while pursuing a shared objec-
tive. If we wish to make sure that other agents do not
interfere, we would have to encapsulate the interaction
within a single global, distributed transaction. But
then, strict isolation requires that the participants tem-
porarily relinquish their independence. Since the par-
ticipants rarely agree to do so, one would have to re-
sort to weaker forms of global serializability known for
heterogeneous federations [29]. But even these require
some form of common control, and because agents
behave somewhat unpredictably, such control could
easily block the system altogether.

Consequently, it seems more realistic to run the risk
of some unwanted interaction and to accept that the
beliefs in the various agents may grow further apart.
For example, we may entirely drop control from within
the global transaction, and commit is considered just a
signal to readjust the beliefs across the participating
agents.

8. Collective beliefs

8.1. Belief reconciliation

To summarize, a distributed database based on be-
liefs leaves a lot of slack to flexibly react to a changing
environment — precisely what motivated the use of
multiagent systems in the first place. We used the slack
to forego the strict control of classical transactions and
to allow beliefs to depart from the real world within
the single agent, and to diverge across a community of
agents.

To add some controlled resilience to the individual
agent it is made transactional. Equally important, to
ensure that the state of the entire distributed belief da-
tabase limits logical contradictions and semantic in-
consistencies to those that do not inhibit the pursuit of
the common goal we have to adjust the individual da-
tabases. We refer to the adjustment process as belief

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

reconciliation. In a nutshell, reconciliation enforces on
a global scale what update operations already enforce
locally, some weaker notions of consistency.

8.2. Reconciliation process

When should belief reconciliation be initiated, and
by whom? As noted above, global abort or global
commit may be such an event, and any participating
database may start the reconciliation. Of course, in a
long-running transaction one may not wish to wait
until the end, and conversely one may tolerate a larger
divergence and readjust the beliefs only at longer in-
tervals. Or a database receiving an unfavorable out-
come may inquire with other databases to readjust its
beliefs, and it may also do so if it has to violate its de-
gree of consistency. If none of those events occur over
a long time beliefs may diverge more and more across
agents so that at least periodically we need a signal to
close the gaps between the beliefs across the distrib-
uted database.

In summary, belief reconciliation must be started by
a single agent, either one that updated its beliefs or that
has every reason to suspect that it needs an update.
Take an agent that wishes to “push” its update. Can the
agent limit the communication of its changes to those
agents to which they are acquainted? How can it be
sure that only these are affected? Or should it simply
flood the multiagent system and leave it to the individ-
ual agents to decide whether to revise or contract their
beliefs? Is there a quick way to bypass those agents
that are not interested, something we may call a context
that describes the current preferences of an agent?
Suppose that a recipient agent adjusts its beliefs. Does
the change have a new effect on the other agents? Do
we have a kind of snowball effect, with each agent
being stimulated into action? How, then, does the
process come to an end? And since agents are autono-
mous, how can one force individual agents to take
timely adjustment action?

Take instead an agent that needs to “pull” beliefs
from others. These others may in turn have to inquire
with further agents and in the process revise or con-
tract their beliefs. Again the process may spread, with
many questions similar to the ones above.

The process may also come to an abrupt end. Sup-
pose an agent tries to convince other agents to see the
world the same way they do, i.e., to share their beliefs.
For example, among the FIPA communicative acts are
some where an agent sends a proposition to another
agent in the belief that the other agent either does not
know or is uncertain of [12]. However, instead the
other agent may reject it and convince the original
agent otherwise, or the agents enter into a dialog be-
fore settling on a particular effect of the reconciliation
process.

YF]',F.

COMPUTER
SOCIETY

8.3. Protocols and models

The challenge, then, is to develop protocols that re-
flect the spread and interaction of beliefs with all the
variations discussed before. But where to look for
them?

Even in classical databases where all components
act entirely deterministically, uncertainty is known to
arise in conjunction with cache management. Gener-
ally speaking, the objective is exact replication of data,
however currency of data may be relaxed to periodic
refreshing [16]. As a concrete example of a centralized
approach, take cache coherence protocols that follow a
client-server paradigm [28] or global cache manager
[5]. The protocols are supposed to supply cache users
with data that are as fresh (are exact replicas of some
master copy) as possible. Clients may poll the server to
ensure freshness, or servers may send invalidation
messages to the clients. If clients are prepared to ac-
cept some stale data, polling or invalidation may be
delayed (soft coherence). Closer to a peer-to-peer
situation come the data replication protocols of parallel
database systems. Refreshing the replicas is always
initiated by the node where the change took place, and
is communicated to the other nodes with delays that
vary according to the protocol used ([19], chapter 14).
These protocols, however, assume a small number of
nodes.

Closest to our needs comes a recent approach by
Bernstein and others for data management for peer-to-
peer computing [4]. They still insist on local consis-
tency but accept inconsistency across the network.
Each peer maintains a — perhaps dynamic — list of ac-
quaintances together with coordination formulas that
explain how the data in one peer may relate to data in
an acquaintance. These formulas are used to either
query acquaintances or propagate updates to acquaint-
ances.

Propagation models have been studied in disciplines
outside informatics as well and may be useful for our
purpose. One interesting area are models for the spread
of infectious diseases, so-called epidemiological mod-
els. The models assume that some fraction of the popu-
lation is susceptible to the disease, and that transmis-
sion between individuals also takes place with less
than 100% efficiency. The various — mostly analytical
— models differ in the strength of the bonds between
the individuals (see, e.g., [14, 21]). They agree in their
simplistic characterization of the individuals: if they
are affected they die. Also common to all of them is
their bimodal behaviour: There is a sharp threshold in
the dissemination parameters’ values for which a reli-
able delivery is ensured with a high probability.

Epidemic protocols seem to hold a particular fasci-
nation to researchers in distributed computing as long

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

as simple models for the nodes suffice. For example,
Eugster et al. claim in a survey article [9] that epidemic
algorithms have been recognized as robust and scal-
able means to disseminate information in large-scale
peer-to-peer settings. They expect that so-called epi-
demic information dissemination scales to large sys-
tems provided one can meet the challenges of scalable
peer-to-peer application level multicast protocols. A
concrete example is given by Rabinovich et al. [25].
User operations are performed on a single replica.
Asynchronously, i.e., at a convenient time, a separate
activity termed anti-entropy compares version informa-
tion of different copies of data items and propagates
updates to older replicas. Since in principle anti-
entropy must periodically compare each pair of data
items, the foremost challenge is to find solutions that
do indeed scale well. For example, propagation may be
scheduled in such a way that every node eventually
performs the propagation transitively from every other
node. The protocols include a so-called out-of-bound
update propagation that can be demanded by a single
node to refresh its copy.

Belief propagation poses further challenges. A sim-
ple model for the nodes won’t do, while on the other
hand the susceptibility of the nodes to the dissemina-
tion is low, and exists only if the new information is
relevant. Relevance is modelled by the so-called con-
text of the node. Coutaz and others point out the im-
portance of contexts in an ever-changing environment
[8]. A fascinating article by Schmidt and Gellersen
draws first operational conclusions [27]. They refer to
context as an abstract description of the local situation
of a node. There are context producers and consumers.
Context must be propagated throughout a distributed
system, with a propagation model where the impor-
tance of context diminishes across time and space. All
these properties are reflected in an abstract model, the
fuzzy (state) space. Fuzzy sets also underlie the recent
paper by Gal et al. on semantic reconciliation [13].

Interestingly, although it is well accepted that
agents may be endowed with disparate long-term
knowledge, and that coordination of agents requires
some sort of conflict resolution, hardly any approaches
on reconciliation have appeared so far. In [22] (pp. 59-
61 and 133) conflicts are only resolved among a lim-
ited number of agents, either when they explicitly co-
operate, often using a centralized interaction protocol
such as a blackboard, or when an agent receives mes-
sages and compares them to the model it keeps of its
acquaintances.

9. Reliable message exchange

All the approaches in Section 6. through 8. must
exercise enough control to guarantee that logical con-

YF]',F.

COMPUTER
SOCIETY

tradictions and semantic inconsistencies do not inhibit
the pursuit of the common goal. To be sure of their
own guarantees they need some lower-level guarantees
by the underlying technical infrastructure. Since inter-
action protocols are at the heart of pursuing the com-
mon goals, message exchange — and perhaps its higher
form of publish/subscribe — must definitely be reliable.
To guard against message loss the proper answer seem
queued transactions [29]. They consist of three transac-
tions, one at each participating agent that includes
queuing and dequeuing, and one within the queue
manager (persistent, recoverable message queues).
Consequently, a persistent queue manager seems an
absolute necessity for a multiagent system. And as a
consequence, each of the agents participating in a mes-
sage exchange should run in a transaction — exactly
what they already are recommended to do to cope with
infrastructure failures.

Part III: Friends

10. Conclusions

On first glance agents seem more like foes to data-
bases, hostile intruders into the database world. To
view agent technology from a database perspective
seems to question some of the basic paradigms of da-
tabase technology, particularly the premise of semantic
consistency of a database. And as a result, transactions
seem to lose some of their lustre, and entirely new up-
date propagation protocols should be developed for a
highly distributed world.

On second thought, though, agents and databases
seem more like friends, like complementary technolo-
gies. Uncertainty should be seen as a phenomenon that
covers a continuum from entirely certain to some limit
on acceptable uncertainty. Semantic consistency is by
nature difficult to maintain in distributed systems, and
database research seems to accept that the assumption
of consistency should be relaxed. Replacing semanti-
cally consistent databases by the notion of belief ap-
pears to offer a uniform model for covering the entire
range between applications that work only under strict
consistency and those where there is not the slightest
chance nor need to maintain more than some weaker
form of formal consistency.

Nor is the issue purely academic. The authors be-
lieve that the flexibility of agents, and the slack in be-
lief databases, is of critical importance for the practical
world because both carry all the potential for systems
that are much more resilient to technical failures as
well as catastrophic events or malicious attacks in the
real world. Lately, some researchers start to wonder

whether it is not an inherent property of nature that
allows living organisms to adapt to continuous or
abrupt changes (evolution). Taking the cues from natu-
ral organizations they argue for a new paradigm of
self-organizing software.

Agent technology is an expensive technology, and
has its problems to become accepted in software engi-
neering. And so would be belief databases. An appar-
ent reason seems to be the price one would have to pay
for the non-determinism. There is empirical evidence,
though, that multiagent systems are superior to more
traditional software when both the problem space and
the solution space become too large for practical enu-
meration [20], something we might call a complex ap-
plication situation.

Complex situations are characterized by the failure
to write down a complete decision table or case state-
ment. Indeed, this sounds familiar to the database
community. Their original motivation for performance
optimization was that the system implementation is
way too complex and offers too many influential fac-
tors as for the user to determine the best execution plan
for a given request. Instead the user is asked to submit
a descriptive request that merely states the properties
desired of the result while the optimizer generates the
best plan from it. The request, one may argue, is lifted
to a more qualitative level.

Now isn’t that exactly what we are doing when we
employ agents? We constrain the problem spaces and
solution spaces, but we give the agent — and likewise
the multiagent system — rules that construct for a given
problem some solution within the constrained solution
space. There may be many solutions, and the challenge
for the agent or multiagent system is to find a good if
not the best solution among them. In other words, we
give the multiagent system a chance for self-
organization as the capability of the agents to optimize
their collaboration with regard to a given qualitative
task.

11. References

[1] Aberer, K., Hauswirth, M.: Peer-to-peer information
systems: concepts and models, state-of-the-art, and future
systems. Tutorial ICDE 2002. URL:
http://Isirpeople.epfl.ch/hauswirth/papers/ICDE2002-
Tutorial.pdf

[2] Androutsellis-Theotokis, S., Spinellis, D.: 4 Survey of
Peer-to-Peer Content Distribution Technologies. ACM
Comp. Surv. 36:4. 2004, 335-371

[3] Ballim, A., Wilks, Y.: Artificial Believers: The Ascription
of Belief. Lawrence Erlbaum Ass., 1991

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

[4] Bernstein, P.A., Giunchiglia, F., Kementsietsidis, A.,
Mylopoulos, J., Serafini, L., Zaihrayeu, 1.: Data Manage-
ment for Peer-to-Peer Computing: A Vision. Proc. Work-
shop. on the Web and Databases (WebDB’02) 2002, 89-94

[5] Bodorik, P., Jutla, D.: QoS Architecture for Caching in
Middleware. SSGRR’2003

[6] Bratman, M.E.: What is Intention?. In P.R.Cohen,
J.L.Morgan, M.E.Pollack (eds.): Intentions in Communica-
tions. MIT Press 1990, 15-32

[7] Bussmann, S., Jennings, N.R., Wooldridge, M.: Multi-
agent Systems for Manufacturing Control — A Design Meth-
odology. Springer. 2004

[8] Coutaz, J., Crowley, J.L., Dobson, S., Garlan, D.: Context
is Key. Comm. ACM 48:3. 2005, 49-53

[9] Eugster, P.T., Guerraoui, R., Kermarrec, A.-M., Mas-
soulié, L.: From Epidemics to Distributed Computing. IEEE
Computing 37:5 (2004), 60-67

[10] Ferber, J.: Multi-agent Systems — An Introduction to
Distributed Artificial Intelligence. Addison-Wesley. 1999

[11] Feynman, R.P., Leighton, R.B., Sands, M.: The Feyn-
man Lectures on Physics. Addison-Wesley. 1965

[12] Foundation for Intelligent Physical Agents: SC00037J —
FIPA Communicative Act Library Specification.

[13] Gal, A., Anaby-Tavor, A., Trombetta, A., Montesi, D.:
A framework or modelling and evaluating automatic seman-
tic reconciliation. The VLDB Journal 14:1 (2005), 50-67

[14] Gonzalez, M.C., Herrmann, H.J.: Scaling of the propa-
gation of epidemics in a system of mobile agents. Physica A,
340 (2004), 741-748

[15] Gray, J., Reuter, A.: Transaction Processing: Concepts
and Techniques. Morgan Kaufmann. 1993

[16] Guo, H., Larson, P.-A., Ramakrishnan, R., Goldstein, J.:
Relaxed Currency and Consistency: How to Say “Good
Enough” in SQL. Proc. ACM SIGMOD Int. Conf. 2004,
815-826

[17] Jamil, H.M.: Belief Reasoning in MLS Deductive Data-
bases. Proc. ACM SIGMOD Int. Conf. 1999, 109-120

[18] Katsuno, H., Mendelzon, A.O.: On the Difference be-
tween Updating a Knowledge Base and Revising It. KR
1991, 387-394

Proceedings of the 9th International Database Engineering & Application Symposium (IDEAS’05)
1098-8068/05 $20.00 © 2005 IEEE

[19] Lockemann, P.C., Dittrich, K.R.: Architektur von Da-
tenbanksystemen. dpunkt.verlag. 2004

[20] Lockemann, P.C., Nimis, J.: Flexibility Through Multi-
agent Systems: Solution or Illusion? In P.v.Emde Boas,
J.Pokorny, M.Bielikova, J.Stuller (eds.): SOFSEM 2004:
Theory and Practice of Computer Science. Lect. Notes in
Comp. Science 2392. Springer 2004, 41-56

[21] Moore, C., Newman, M.E.J.: Epidemics and percolation
in small-world networks. Physical Review E 61:5 (2000),
5678-5682

[22] Ossowski, S.: Co-ordination in Artificial Agent Socie-
ties. Lect. Notes in Artif. Intelligence 1535. Springer. 1999

[23] Pearl, J.: Belief Networks Revisited. In: Artificial Intelli-
gence in Perspective. MIT Press 1994, 49-52

[24] Pleisch, S., Schiper, A.: Approaches to Fault-Tolerant
and Transactional Mobile Agent Execution — An Algorithmic
View. ACM Computing Surveys 36:3 (2004), 219-262

[25] Rabinovich, M., Gehani, N., Kononov, A.: Scalable
Update Propagation in Epidemic Replicated Databases.
Proc. 5™ Int. Conf. on Extending Database Technology 1996,
207-222

[26] Satoh, K., Yamamoto, K.: Speculative Computation with
Multi-Agent Belief Revision. Proceedings 1st Int. Joint Conf.
on Autonomous Agents and Multiagent Systems: Part 2.
2002, 897-904

[27] Schmidt, A., Gellersen, H.-W.: Modell, Architektur und
Plattform fiir Informationssysteme mit Kontextbezug. Infor-
matik Forsch. Entw. 16 (2001). 213-224

[28] Wang, J.: A Survey of Web Caching Schemes for the
Internet. ACM Computer Communication Review 29:5
(1999), 36-46

[29] Weikum, G., Vossen, G.: Transactional Information
Systems. Morgan Kaufmann. 2002

[30] Weiss, G. (ed.): Multiagent Systems — A Modern Ap-
proach to Distributed Artificial Intelligence. The MIT Press.
1999

[31] Witte, R.: Architektur von Fuzzy-Informationssystemen.
Dissertation Universitdt Karlsruhe. 2002. http://rene-witte.net

[32] Wooldridge, M.: An Introduction to Multiagent Systems.
John Wiley & Sons. 2002

YF]',F.

COMPUTER
SOCIETY

