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Abstract. An important software engineering artefact used by develop-
ers and maintainers to assist in software comprehension and maintenance
is source code documentation. It provides insights that help software engi-
neers to effectively perform their tasks, and therefore ensuring the quality
of the documentation is extremely important. Inline documentation is
at the forefront of explaining a programmer’s original intentions for a
given implementation. Since this documentation is written in natural
language, ensuring its quality needs to be performed manually. In this
paper, we present an effective and automated approach for assessing
the quality of inline documentation using a set of heuristics, targeting
both quality of language and consistency between source code and its
comments. We apply our tool to the different modules of two open source
applications (ArgoUML and Eclipse), and correlate the results returned
by the analysis with bug defects reported for the individual modules in
order to determine connections between documentation and code quality.

1 Introduction

“Comments as well as the structure of the source code aid in program understanding
and therefore reduce maintenance costs.” – Elshoff and Marcotty (1982) [1]

Over the last decade, software engineering processes have constantly evolved to
reflect cultural, social, technological, and organizational changes. Among these
changes is a shift in development processes from document driven towards agile
development, which focuses on software development rather than documentation.
This ongoing paradigm shift leads to situations where source code and its com-
ments often become the only available system documentation capturing program
design and implementation decisions. Studies have shown that the effective use
of comments “can significantly increase a program’s comprehension” [2], yet the
amount of research focused towards the quality assessment of in-line documenta-
tion is limited [3]. Recent advancements in the field of natural language processing
(NLP) has enabled the implementation of a number of robust analysis techniques
that can assist users in content analysis. In this work, we focus on using NLP
services to support users in performing the time-consuming task of analysing
the quality of in-line documentation. We focus mainly on in-line documentation
due to its close proximity to source code. Additionally, we developed a set of
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heuristics based on new and existing metrics to assess the consistency between
code and documentation, which often degrades due to changes in source code not
being reflected in their comments. Results of the NLP analysis are exported into
OWL ontologies, which allow to query, reason, and cross link them with other
software engineering artefacts.

2 Background

In this section we discuss the background relevant for the presented work, in par-
ticular Javadoc and the impact of inline documentation on software maintenance.

2.1 Inline Documentation and Javadoc

Literate programming [4] was suggested in the early 1980s by Donald Knuth
in order to combine the process of software documentation with software pro-
gramming. Its basic principle is the definition of program fragments directly
within software documentation. Literate programming tools can further extract
and assemble the program fragments as well as format the documentation. The
extraction tool is referred to as tangle while the documentation tool is called
weave. In order to differentiate between source code and documentation, a specific
documentation or programming syntax has to be used.

Single-source documentation also falls into the category of documents with
inter-weaved representation. Contrary to the literate approach, documentation is
added to source code in the form of comments that are ignored by compilers. Given
that programmers typically lack the appropriate tools and processes to create
and maintain documentation, it has been widely considered as an unfavourable
and labour-intensive task within software projects [5]. Documentation generators
currently developed are designed to lessen the efforts needed by developers when
documenting software, and has therefore become widely accepted and used.
Javadoc [6] is an automated tool that generates API documentation in HTML
using Java source code and source code comments. In Fig. 1, we show a small
section of an API document generated using Javadoc.

Javadoc comments added to source code are distinguishable from normal
comments by a special comment syntax (/**). A generator (similar to the weave
tool within literate programming) can extract these comments and transform the
corresponding documentation into a variety of output formats, such as HTML,

Fig. 1. Part of an API Documentation generated using Javadoc
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LATEX, or PDF. Most tools also provide specific tags within comments that
influence the format of the documentation produced or the way documentation
pages are linked. Both Doxygen [7] and Javadoc also provide an API to implement
custom extraction or transformation routines [6]. Even during early stages of
implementation, the Javadoc tool can process pure stubs (classes with no method
bodies), enabling the comment within the stub to explain what future plans hold
for the created identifiers.

Different types of comments are used to document the different types of
identifiers. For example, a Class comment should provide insight on the high-level
knowledge of a program, e.g., which services are provided by the class, and which
other classes make use of these services [2]. A Method comment, on the other hand,
should provide a low-level understanding of its implementation [2]. The default
Javadoc doclet provides a limited amount of checks that are mainly syntactic in
nature. However, more analyses can potentially be applied on Javadoc comments,
measuring factors such as completeness, synchronization and readability.

2.2 Source Code Comments and Impact on Software Maintenance

With millions of lines of code written every day, the importance of good doc-
umentation cannot be overstated. Well-documented software components are
easily comprehensible and therefore, maintainable and reusable. This becomes
especially important in large software systems [8]. Since in-line documentation
comes in contact with various stakeholders of a software project, it needs to
effectively communicate the purpose of a given implementation to the reader.
Currently, the only means of assessing the quality of in-line documentation is
by performing time-consuming manual code checks. Any well-written computer
program contains a sufficient number of comments to permit people to read it.
Development programmers should prepare these comments when they are coding
and update them as the programs change. There exist different types of guide-
lines for in-line documentation, often in the form of programming standards.1 In
general, each program module contains a description of the logic, the purpose,
and the rationale for the module. Such comments may also include references
to subroutines and descriptions of conditional processing. Specific comments for
specific lines of code may also be necessary for unusual coding. For example, an
algorithm (formula) for a calculation may be preceded by a comment explaining
the source of the formula, the data required, and the result of the calculation
and how the result is used by the program.

Writing in-line documentation is a painful and time-consuming task that often
gets neglected due to release or launch deadlines. With such deadlines pressuring
the development team it becomes necessary to prioritize. Since customers are
mostly concerned with the functionality of an application, implementation and
bug fixing tasks receive a higher priority compared to documentation tasks.
Furthermore, finding a balance, describing all salient program features compre-
hensively and concisely is another challenge programmers face while writing

1 See, e.g., http://www.gnu.org/prep/standards/standards.html

http://www.gnu.org/prep/standards/standards.html
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in-line documentation. Ensuring that development programmers use the facilities
of the programming language to integrate comments into the code and to update
those comments is an important aspect of software quality. Even though the
impact of poor quality documentation is widely known, there are few research
efforts focused towards the automatic assessment of in-line documentation [9].

3 Improving Software Quality through
Automatic Comment Analysis: The JavadocMiner

The goal of our JavadocMiner tool is to enable users to 1) automatically assess
the quality of source code comments, and 2) export the in-line documentation
and the results returned from this analysis to an ontology.

3.1 Analysis Heuristics for Source Code Comments

In this section, we discuss the set of heuristics that were implemented to assess the
quality of in-line documentation. The heuristics are grouped into two categories,
(i) internal (NL quality only), and (ii) code/comment consistency.

Internal (NL Quality) Comment Analysis. We first describe the set of
heuristics targeting the natural language quality of the in-line documentation
itself.

Token, Noun and Verb Count Heuristic: These heuristics are the initial means
of detecting the use of well-formed sentences within in-line documentation. The
heuristic counts the number of tokens, nouns and verbs used within a Javadoc
comment.

Words Per Javadoc Comment Heuristic (WPJC): This heuristic calculates the
average number of words in a Javadoc comment [9]. It can be used to detect a
Java Class that contains Fields, Constructors and Methods that are under- or
over-documented.

Abbreviation Count Heuristic (ABB): According to “How to Write Doc Comments
for the Javadoc Tool” [10] the use of abbreviations in Javadoc comments should
be avoided; therefore, using “also known as” is preferred over “aka”. This heuristic
counts the number of abbreviations used within a Javadoc comment.

Readability Heuristics (FOG/FLESCH/KINCAID): In the early twentieth cen-
tury linguists conducted a number of studies that used people to rank the
readability of text [9]. Such studies require a lot of resources and are often
infeasible for source code comments. A number of formulas were implemented
that analyse the readability of text [11], for example:

The Fog Index: Developed by Robert Gunning, it indicates the number of
years of formal education a reader would need to understand a block of text.
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/** The following method parses the associations of a class diagram.

* @return String A String association is returned

* @param role The AssociationEnd <em>text</em> describes.

* @param text A String on the above format.

* @throws ParseException When is detects an error in the role string.

* See also ParseError.getErrorOffset().

*/
protected String parseAssociationEnd(Object role, String text) throws ParseException

Fig. 2. An Example of a Javadoc Method Comment

Flesch Reading Ease Level: Rates text on a 100 point scale. The higher the
scale the easier to read. An optimal score would range from 60 to 70.2

Flesch-Kincaid Grade Level Score: Translates the 100 point scale of the
Flesch Reading Ease Level metric to a U.S. grade school level.

These readability formulas are also used by a number of U.S. government agencies
such as the DoD and IRS to analyse the readability of their documents [9].

Code/Comment Consistency Analysis. The following heuristics analyse
in-line documentation in relation to the source code being documented.

Documentable Item Ratio Heuristic (DIR): The DIR metric was originally pro-
posed by [9]. For in-line documentation describing a method to be considered
complete, it should document all its aspects. For example, for methods that have
a return type, contain parameters, or throw exceptions, the @return, @parameter
and @throws in-line tags must be used.

Any Javadoc Comment Heuristics (ANYJ): ANYJ computes the ratio of identi-
fiers with Javadoc comments to the total number of identifiers [9]. This heuristic
can be used to determine which classes provide the least amount of documentation.

SYNC Heuristics (RSYNC/PSYNC/ESYNC): The following heuristics detect
methods that are documenting return types, parameters and thrown exceptions
that are no longer valid (e.g., due to changes in the code):

RSYNC: When documenting the return type of a method the @return in-line
tag must begin with the correct name of the type being returned followed by
the doc comment explaining the return type.

PSYNC: When documenting the parameter list of a method the @param in-line
tag should begin with the correct name of the parameter being documented
followed by the doc comment explaining the parameter.

ESYNC: When documenting the exceptions thrown by a method the @throws
or @exception in-line tags documentation must begin with the correct names
of the exceptions being returned followed by the doc comment explaining the
exception itself.

2 A score between 90–100 would indicate that the block of text could be understood
by an 11 year old and would therefore be overly simplified [11].
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The parseAssociationEnd method in Fig. 2 is an example of a method that
contains a return type, parameter list, and exception that is consistent with the
in-line documentation used in the @return, @param, and @throws in-line tags.

3.2 Source Code Comment Ontology

The results of the heuristics described above are exported into an OWL ontology.
Using an ontology enables us to model the large amount of information using a
small number of axioms (individuals and relationships). The semantically rich
model provides users with a high level conceptualization of the information, while
at the same time allowing them to focus on specific parts of the model. Using an
ontology also enables users to take advantage of the reasoning services provided
by a Description Logic reasoner such as Racer [12], Pellet [13], or FaCT++ [14].
Finally, visualizations and SPARQL queries can also be applied on the source
code comment ontology.

The source code comment ontology models: (1) NLP related entities such as
Sentence, NP, VP; (2) Source code identifiers such as Interface, Class, Field and
Method; (3) Source code comments such as MethodComment or FieldComment;
and (4) Entities such as Author and Version that can exist in source code
comments.

Many relationships exist between each entity. For example, the relationships
where a class: implements a certain interface, and contains a certain class
comments that is written by a specific author. Also, fields and methods that also
have their own comments are all modelled within the ontology. Fig. 3 shows an
excerpt of our ontology.

Fig. 3. A Excerpt from the Source Code Comment Ontology
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4 Implementation

In this section, we discuss in detail the various parts that make up the JavadocMiner.
We begin by covering the process of building a corpus from source code using a
custom doclet.3 We then explain the components used within our text mining
application to process the corpus for the set of heuristics described above.

4.1 Corpus Generation from Javadoc

Javadoc’s standard doclet generates API documentation using an HTML format.
While this is convenient for human consumption, automated NLP analysis requires
a more structured XML format. Generation of such an XML format is possible
by developing a custom doclet using the Javadoc library, which provides access
to the Abstract Syntax Tree (AST) generated from source code and source code
comments. We implemented a custom doclet called the SSLDoclet [15],4 which
enables us to (i) control what information from the source code will be included
in the corpus, and (ii) mark-up the information using a schema that our NLP
application can process easily.

4.2 The JavadocMiner GATE Application

Our JavadocMiner is implemented as a GATE pipeline [16], which is assembled
using individual processing resources (PRs) running on a corpus of documents.

Preprocessing Stage. Before running the JavadocMiner PR, we perform pre-
processing tasks using components already provided by GATE, including tok-
enization, sentence splitting, and POS-tagging.

Abbreviation Detection. The abbreviations are detected using a gazetteering list
that is part of ANNIE [16]. The list contains commonly used abbreviations within
the English language.

JavadocMiner PR. We implemented a GATE processing resource component
called the JavadocMiner PR that contains the set of heuristics described above
to assess the quality of source code comments. Most of the heuristics were
implemented by us; with the exception of the readability heuristics that makes
use of an existing library [17].

OwlExporter PR. The OwlExporter [18] is the final step in our pipeline that
is in charge of taking the annotations created by the text mining pipeline and
exporting it to an ontology.

3 See http://java.sun.com/j2se/1.4.2/docs/tooldocs/javadoc/overview.html
4 SSLDoclet, see http://www.semanticsoftware.info/javadoclet

http://java.sun.com/j2se/1.4.2/docs/tooldocs/javadoc/overview.html
http://www.semanticsoftware.info/javadoclet
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Table 1. Assessed Open Source Project Versions, Release Dates, Lines of Code
(LOC), Number of Comments, Identifiers and Bugs

Project Version Release Date LOC Num. of Comments Num. of Identifiers Num. of Bug Defects
ArgoUML v0.24 02/2007 250,000 6871 13,974 46
ArgoUML v0.26 09/2008 600,000 6875 14,262 54
ArgoUML v0.28.1 08/2009 800,000 7168 14,789 48
Eclipse v3.3.2 06/2007 7,000,000 32,172 158,009 176
Eclipse v3.4.2 06/2008 8,000,000 33,919 163,238 413
Eclipse v3.5.1 06/2009 8,000,000 34,360 165,945 153

5 Application and Evaluation

In the section, we discuss how the JavadocMiner was applied on two open source
projects for an analysis of comment quality and their consistency with the source
code; we discuss the results gathered from our study, and finally show how we
additionally correlated the NLP quality metrics with bug statistics.

5.1 Data

We conducted a case study where the JavadocMiner was used to assess the quality
of in-line documentation found in three major releases of the UML modelling
tool ArgoUML5 and the IDE Eclipse.6 In Table 1, we show the versions of the
projects that were part of our quality assessment.

5.2 Experiments

We split the ArgoUML and Eclipse projects into their three major modules, for
ArgoUML – Top Level, View & Control, and Low Level, and for Eclipse – Plugin
Development Environment (PDE), Equinox, and Java Development Tools (JDT).
The quality of the in-line documentation found in each module was assessed
separately for a total of 43,025 identifiers and 20,914 comments from ArgoUML,
and 487,192 identifiers and 100,451 comments from Eclipse. The complete quality
assessment process for both open source projects took less than 3 hours. We
continued by finding the amount of bug defects reported for each version of
the modules using the open source project’s issue tracker system. The Pearson
product-moment correlation coefficient measure was then applied to the data
gathered from the quality assessment and issue tracker systems to determine the
varying degrees of correlation between the individual heuristics and bug defects.

5.3 Results and Analysis

Results of our study indicated that the modules that performed best in our
quality assessment were the Low Level module for ArgoUML (Fig. 4, left side)
and the PDE module for Eclipse (Fig. 4, right side).
5 ArgoUML, http://www.ohloh.net/p/argouml/analyses/latest
6 Eclipse, http://www.ohloh.net/p/eclipse/analyses/latest

http://www.ohloh.net/p/argouml/analyses/latest
http://www.ohloh.net/p/eclipse/analyses/latest
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Fig. 4. Charts for Bug Trend, Code/Comment and Internal (NL Quality) Metrics

Quality Analysis. We believe that the reason for the Low Level module
(ArgoUML) and the PDE module (Eclipse) outperforming the rest of the modules
in every heuristic is that they are both the base libraries that every other module
extends. For example, Eclipse is a framework that is extended using plug-ins
that use the services provided by the PDE API module. The Eclipse project is
separated into API and internal non-API packages, and part of the Eclipse policy
states that all API packages must be properly documented [9].

The readability results returned by the JavadocMiner indicate that the Low
Level module contained in-line documentation that is less complicated compared
to the View and Control module (Fig. 4, bottom left), yet more complicated than
the in-line documentation found in the Top Level module. The PDE module in
Eclipse also returned similar Kincaid results compared to the other two Eclipse
modules (Fig. 4, bottom right).
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Table 2. Pearson Correlation Coefficient Results for ArgoUML and Eclipse

Project ANYJ SYNC ABB FLESCH FOG KINCAID TOKENS WPJC NOUNS VERBS
ArgoUML 0.99 0.98 -0.94 0.32 0.80 0.79 0.89 0.91 0.98 0.87
Eclipse 0.97 0.89 -0.86 0.37 0.77 0.84 0.88 0.86 0.91 0.73

Comment-Bug Correlation. As part of our efforts to correlate the results of
our study with another software engineering artefact, we examined the amount
of bug defects that were reported for each version of the modules for ArgoUML
(Fig. 4, top left) and for Eclipse (Fig. 4, top right). We observed that the modules
that performed best in our quality assessment also had the least amount of
reported defects, and vice versa for the modules that performed poorly. In order
to determine how closely each metric correlated with the number of reported
bug defects, we applied the Pearson product-moment correlation coefficient on
the data gathered from the quality assessment and the number of bug defects
(Table 2). Fig. 4 also shows the quality assessments returned by ANYJ (Fig. 4,
middle) and Kincaid (Fig. 4, bottom) for both ArgoUML and Eclipse.

The correlation and coefficient results showed that the ANYJ, SYNC, ABB,
Tokens, WPJC and Nouns heuristics were strongly correlated to the number
of bug defects, whereas the Flesch readability metric was amongst the least
correlated. In Fig. 5 (top), we show the number bug defects reported at the level
of quality assessments returned by the ANYJ and ABB metrics, and in Fig. 5
(bottom) for the readability and NLP metrics for ArgoUML. The same data is
represented for Eclipse in Fig. 6.

Examining the charts showed a correlation between each metric and the num-
ber of bug defects; with the exception of the Flesch metric, which we previously
determined as being the least correlated using the correlation statistic.

6 Related Work

There has been effort in the past that focused on analysing source code comments,
for example in [19] human annotators were used to rate excerpts from Jasper
Reports, Hibernate and jFreeChart as being either More Readable, Neutral or Less
Readable. The authors developed a “Readability Model” that consists of a set of
features such as the average and/or the maximum 1) line length in characters;
2) identifier length; 3) identifiers; and 4) comments represented using vectors.
The heuristics used in the study were mostly quantitative in nature and based
their readability scale on the length of the terms used, and not necessarily the
complexity of the text as a whole. The authors also made no attempt to measure
how up-to-date the comments were with the source code they were explaining.

The authors of [3] manually studied approximately 1000 comments from the
latest versions of Linux, FreeBSD and OpenSolaris. Part of their study was to
see how comments can be used in developing a new breed of bug detecting tool,
or how comments that use cross-referencing can be used by editors to increase a
programmer’s productivity by decreasing navigation time. The work attempts
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Fig. 5. Code/Comment Consistency and NL Quality Metrics vs. Bugs – ArgoUML

to answer questions such as 1) what is written in comments; 2) whom are the
comments written for or written by; 3) where the comments are located; and
4) when the comments were written. Results from the study showed that 22.1%
of the analysed comments clarify the usage and meaning of integers, 16.8% of
the examined comments explain implementation, for example, which function is
responsible for filling a specific variable, 5.6% of source code comments describe
code evolution such as cloned code, deprecated code and TODOs. The purpose
of the study was to classify the different types of in-line documentation found
in software and not necessarily assess their quality. The authors also made no
attempt to automate the process, nor was there any major correlations made
with other software engineering artefacts.

The work described in [20] defines a Source Code Vocabulary (SV) as being
the union of Class Name, Attribute Name, Function Name, Parameter Name and
Comment Vocabularies. The work uses a combination of existing tools like diff
to answer questions; such as how the vocabularies evolve over time, what type
of relationships exist between the individual vocabularies, are new identifiers
introducing new terms, and finally what do the most frequent terms refer to.

The only work that we know of which focused on automatically analysing
API documentation generated by Javadoc is [9]. The authors implemented a tool
called Quasoledo that measures the quality of documentation with respect to
its completeness, quantity and readability. Here, we extended the works of [9]
by introducing new quality assessment metrics. We also analysed each module
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Fig. 6. Code/Comment Consistency and NL Quality Metrics vs. Bugs – Eclipse

of a software project separately, allowing us to observe correlations between the
quality of in-line documentation and bug defects. Both of the efforts mentioned
above focus mostly on the evolution of in-line documentation and whether they
co-change with source code, and not necessarily on the quality assessment of
in-line documentation. None of the efforts mentioned in this section put nearly as
much emphasis on correlating the quality of in-line documentation with reported
bug defects as was done in our study.

7 Conclusions and Future Work

In this paper, we discussed the challenges facing the software engineering domain
when attempting to manage the large amount of documentation written in
natural language. We presented an approach to automatically assess the quality
of documentation found in software. Regardless of the current trends in software
engineering and the paradigm shift from documentation to development, we have
shown how potential problem areas can be minimized by maintaining source
code that is sufficiently documented using good quality up-to-date source code
comments. Currently we are conducting a case study involving students and the
quality assessment of 120 in-line documentation samples, in order to compare
the results obtained from the JavadocMiner with the results of human intuition
analysing the quality of in-line documentation.
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