
Generating an NLP Corpus from Java Source Code: The SSL Javadoc Doclet

Ninus Khamis, Juergen Rilling, and René Witte

Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

Abstract
Source code contains a large amount of natural language text, particularly in the form of comments, which makes it an emerging target
of text analysis techniques. Due to the mix with program code, it is difficult to process source code comments directly within NLP
frameworks such as GATE. Within this work we present an effective means for generating a corpus using information found in source
code and in-line documentation, by developing a custom doclet for the Javadoc tool. The generated corpus uses a schema that is easily
processed by NLP applications, which allows language engineers to focus their efforts on text analysis tasks, like automatic quality control
of source code comments. The SSLDoclet is available as open source software.

1. Introduction
One of the main challenges in Software Engineering is per-
forming software maintenance tasks on an application that
a developer is unfamiliar with. An important software en-
gineering artefact used by developers and maintainers to
assist in software comprehension and maintenance is source
code documentation. Source code documents provide the
insight needed by developers and maintainers to effectively
perform their tasks, and therefore ensuring the quality of
this documentation is extremely important. In-line docu-
mentation is at the forefront of explaining a programmer’s
original intentions for a given implementation. The blocks
of text are inserted directly in source code, and are designed
to efficiently assist others in understanding the source code.
Since in-line documentation is written in natural language,
they are a prime candidate for applying NLP and text mining
methods, e.g., for quality assurance, ontology population,
or traceability recovery. However, inline comments are
mixed with source code in a way that makes them difficult
to work with directly when using standard NLP tools such as
GATE (Cunningham et al., 2002). Javadoc (Kramer, 1999)
is a standard inline documentation tool that extracts and
transform source code comments to HTML. This format is
very well suited for human end users, but again not ideal
for machine processing as many semantics are lost in this
translation. For NLP processing, a meta-data language such
as XML (Ray, 2003) is preferable.
In this paper, we introduce the Semantic Software Lab Doclet
(SSLDoclet), which is a custom Javadoc doclet that is able
to generate a corpus using information found in source code
and in-line documentation. The goal of the SSLDoclet is to
covert the information found in source code by encoding it
using an XML schema that is specifically designed for NLP
applications. Our doclet is available under an open source
license.1

2. Background
Javadoc (Kramer, 1999) is an automated tool that gener-
ates API documentation using Java source code and in-line
documentation. In Figure 1 we show part of an API docu-
mentation generated using the Javadoc tool and the standard

1SSLDoclet, http://www.semanticsoftware.info/javadoclet

Figure 1: Excerpt of an API Documentation generated using
the Standard Javadoc Doclet

doclet.
Javadoc comments added to source code are distinguished
from normal comments by a special comment syntax (/**).
The javadoc tool extracts the source code and comments
in order to transform the information into a variety of output
formats, such as HTML, LATEX, or PDF.
Javadoc provides an API that enables users to implement
their own doclets2 in order to generate documents using a
desired output format.

3. Design & Implementation
Javadoc’s standard doclet generates API documentation us-
ing the HTML format. While this is convenient for human
consumption, automated NLP analysis applications require
a more structured XML format.
The Javadoc library is in charge of parsing a source directory
and providing an interface to a set of objects that is created
as a result of the static source code analysis. Generation of
the XML documents is then made possible by developing a
custom doclet that uses the Javadoc library.
Implementing a custom doclet enabled us to (i) control what
information from the source code will be included in the
corpus, and (ii) mark up the information using a schema that
NLP applications can easily process.

2Java Doclet Overview, http://java.sun.com/j2se/1.4.2/docs/
tooldocs/javadoc/overview.html

http://www.semanticsoftware.info/javadoclet
http://java.sun.com/j2se/1.4.2/docs/tooldocs/javadoc/overview.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/javadoc/overview.html

3.1. SSL Javadoc Doclet Design

In this section, we discuss in detail the level granularity and
structure used when marking up Java source code using our
SSLDoclet. As a running example, consider Figure 2, which
shows an Abstract Class declaration taken from the open
source project ArgoUML.

package org.argouml.notation.providers;

import java.beans.PropertyChangeListener;
import org.argouml.model.Model;
import org.argouml.notation.NotationProvider;

/∗∗
∗ This abstract class forms the basis of all Notation providers
∗ for the text shown in the Fig that represents the CallState.
∗ Subclass this for all languages.
∗
∗ @author mvw@tigris.org
∗/

public abstract class CallStateNotation extends NotationProvider

Figure 2: An Abstract Class Declaration taken from Ar-
goUML’s Source Code

In Figure 3, we show the same declaration marked up using
our XML meta-data tags, attributes, and elements.

<Abstract Class Block>
<Abstract Class>CallStateNotation</Abstract Class>
<Package>org.argouml.notation.providers</Package>
<Extends Block>

<Extends superclass="Object"
qualifiedType="org.argouml.notation.NotationProvider"

superclassFullType="java.lang.Object"
type="Abstract_Class">

NotationProvider
</Extends>
<Extends Comment>

A class that implements this abstract class manages a
text shown on a diagram. This means it is able to
generate text that represents one or more UML objects.
And when the user has edited this text , the model may be
adapted by parsing the text .
Additionally , a help text for the parsing is provided,
so that the user knows the syntax.

</Extends Comment>
</Extends Block>
<Class Comment Block>

<Class Comment>
This abstract class forms the basis of all Notation
providers for the text shown in the Fig that represents
the CallState.
Subclass this for all languages.

</Class Comment>
<Author>mvw@tigris.org</Author>

</Class Comment Block>

Figure 3: A Section of the Corpus, generated using an Ab-
stract Class Declaration

What makes XML superior over HTML for representing
information that needs to be analysed by NLP applications,
is that XML is much more versatile than HTML, and en-
ables users to use custom tags and attributes to mark up
the information of the XML elements (Ray, 2003), whereas
with HTML we are limited to pre-defined tags such as <p>
or <head>, and predefined attributes such as font-size.
Such tags are designed to be rendered by a browser for
human consumption (Antoniou and van Harmelen, 2008).

3.2. Marking Up Source Code
Our SSLDoclet is able to model both the syntactic and se-
mantic information found in Java source code, such as:

• Parent/Child relationships between generalized and spe-
cialized Classes.

• The Package an Interface or (Abstract) Class belongs
to.

• Fields, Constructors and Methods of a Class.

• The types, modifiers (private, public, protected), and
constant values of the fields.

• The return types, parameter list, and thrown exceptions
of a method.

In Figure 3, we show how our doclet represents the infor-
mation for the CallStatNotation abstract class, us-
ing the <Package> and <Extends> tags to model the
package the abstract class belongs to, and the superclass
that it extends. Figure 4 shows how the parameters of the
intialiseListener method are modelled using the
XML tag <Parameter>.

<Methods>
<Method Block>
<Method modifier="public"

visibility ="public" signature="()">
enable

</Method>
<Method Comment Block>

<Method Comment>
Method to enable the module.<p>
If it cannot enable the module because some other
module is not enabled it can return
< ;code>false< ;/ code>.
In that case the module loader will defer this
attempt until all other modules are loaded (or until
some more of ArgoUML is loaded if at startup). Eventually
it is only this and some other modules that is not loaded
and they will then be listed as having problems.

</Method Comment>
</Method Comment Block>
<Return Block>

<Return>boolean</Return>
<Return Comment>true if all went well</Return Comment>

</Return Block>
</Method Block>
</Methods>

Figure 4: A Section of the Corpus Generated using a Method
Declaration

Both figures demonstrate how our doclet is able to represent
more information effectively using XML attributes, com-
pared to the standard HTML output. For example, we now
also know that the parent of the CallStatNotation’s
superclass is Object, and that the listener parameter
of the intialiseListener method has the type Prop-
ertyChangeListener.

3.3. Marking Up Source Code Comments
Our SSLDoclet is also able to mark up the natural lan-
guage information found in Javadoc comments, such as
the docComment, block, and in-line tags.
Figure 2 shows an example of a Javadoc comment that in-
cludes a docComment, and uses the @author in-line tag.
And in Figure 3, we show how Javadoc comments are

Figure 5: Corpus Generated using the SSLDoclet loaded within GATE

marked-up using the <Extends Comment> tag, which
contains the comment belonging to a super class. Ad-
ditionally, the figure shows how the class comment be-
longing to CallStatNotation is represented using the
<Class Comment> and <Author> tags.

The SSLDoclet uses a schema that maintains the relation-
ships found in source code, and represents the information
using a combination of XML tags, attributes and elements.
In Figure 6, we show how the relationships found in the
sample source code is modelled. We eliminated the XML
elements and attributes for readability purposes.

The information generated using the SSLDoclet could have
been modelled in a number of different ways; however, it
is important to keep in mind that when a corpus is loaded
within an NLP framework such as GATE, the XML tags
are interpreted as annotations, the XML elements are in-
terpreted as entities of the annotation they belong to, and
finally the XML attributes are interpreted as features of the
annotation.

Our SSLDoclet is designed to generate a corpus using a
schema that best utilizes how NLP frameworks interpret the
information when initially loaded within the environment.
In Figure 5, we show how annotations, features, and entities
are created using only the original markups supplied by the
corpus.

It is important that the information within a corpus be repre-
sented using a structure that enables the NLP environment
to form an initial foundation that acts as the starting point
for the automated NLP analysis.

<Abstract Class Block>
<Abstract Class/>

<Package/>
<Extends Block>

<Extends/>
<Extends Comment/>

</Extends Block>
<Class Comment Block>

<Class Comment/>
<Author/>

</Class Comment Block>
<Constructors>
<Constructor Block>

<Constructor/>
<Constructor Comment Block>

<Constructor Comment/>
</Constructor Comment Block>
<Constructor Block>

<Constructor/>
<Parameter Block>
<Parameter/>
<Parameter Comment/>
</Parameter Block>

</Constructor Block>
</Constructors>
<Methods>

<Method Block>
<Method/>
<Parameter Block>

<Parameter/>
<Parameter Comment/>

</Parameter Block>
</Method Block>

</Methods>
</Abstract Class Block>

Figure 6: SSLDoclet Schema

4. Application and Evaluation
To execute the SSLDoclet, it is passed as a parameter to
javadoc when processing a source directory. In Figure 7

Table 1: Open Source Project Versions, Lines of Code (LOC), Number of Comments and Identifiers, and Process Duration

Project LOC Number of Comments Number of Identifiers Duration (sec.)
ArgoUML v0.24 250,000 6,871 13,974 3.4
ArgoUML v0.26 600,000 6,875 14,262 8.9
ArgoUML v0.28.1 800,000 7,168 14,789 12.2
Eclipse v3.3.2 7,000,000 32,172 158,009 93.1
Eclipse v3.4.2 8,000,000 33,919 163,238 115.7
Eclipse v3.5.1 8,000,000 34,360 165,945 123.1

we show an example of a Javadoc ant task that indicates
(i) the path and the name of the doclet, (ii) the path to the
source directory, (iii) the name of the package in the source
directory that needs to be processed, and finally (iv) any
other additional parameters, for example, to increase the
default Java heap space.

<target name="docs" depends="jar">
<javadoc docletpath = "${doclet.dir}/

${ant.project.name}.jar"
doclet = "${doclet}"
sourcepath = "${src.dir}"
packagenames = "info.semanticsoftware.doclet"
additionalparam = "-J-Xmx256m"
/>

</target>

Figure 7: Javadoc Ant Task that accepts the SSLDoclet as a
Parameter

An NLP framework such as GATE can now process the gen-
erated XML meta-data as annotations, entities and features,
which form the basis for the automated NLP analysis. In
Figure 8, we show how GATE interprets the meta-data found
within the corpus for the intialiseListener method.

Figure 8: Annotations and Features created by GATE for a
Method Declaration generated by the SSLDoclet

4.1. SSLDoclet Benchmarks
We performed a performance evaluation of our doclet to
assess the time needed for creating a corpus from source
code. Here, the SSLDoclet is passed as a parameter to the
Javadoc parser. The parser is extremely efficient compared
to other parsers when processing an entire source directory.
In Table 1, we show the time required to process different
versions of the ArgoUML and Eclipse open source projects.

4.2. Example Application: The JavadocMiner
We developed several NLP applications that currently use
a corpus generated by the SSLDoclet as input. The
JavadocMiner is a GATE application that assesses the qual-
ity of in-line documentation written in natural language

found in source code. In Figure 9, we show an illustra-
tion of the processing resources that currently make up the
JavadocMiner GATE pipeline. Each processing resource
adds additional information in form of annotations to the
corpus.

5. Related Work
A number of other doclets exist that can create XML files
using javadoc and information found in source code, such
as the xml-doclet,3 Mavens’s XMLDoclet,4 and finally
the jeldoclet.5

However, when looking at the schema generated by these
doclets, we observed that the doclets were not necessarily
designed for generating a corpus to be used within NLP
applications.
For example, the xml-docletmarks up information using
only XML tags and elements and does not make use of
XML attributes to represent information. As mentioned
earlier, XML attributes are interpreted by NLP frameworks
as features of an annotation.
A doclet that generates a schema that closely resembles
the SSLDoclet is the jeldoclet. The jeldoclet how-
ever does not attempt to differentiate between the different
types of comments, which could minimize the descriptive-
ness of the corpus. The jeldoclet also does not capture
the information provided by Javadoc when a certain class
implements or extends another class, as shown in Figure 3.
The source data being represented, and the output format
is the same for all XML generating doclets, and the XML
documents generated using the doclets mentioned herein
can be loaded within an NLP framework. However, how
the information is marked-up can drastically change the
number of annotations, features and entities that are created,
which can have a cascading effect on the rest of processing
resource within the NLP application.
Having the most number of annotations, features or entities
as result of how the information is marked up within an XML
document is not necessarily beneficial. Providing a schema
that enables NLP frameworks to differentiate between what
is an annotation, feature, and entity is important when gen-
erating an XML document that is to be used as a corpus.
None of the existing doclets that we examined were capable
of doing so. For example, since the xml-doclet marks
up all the information using XML tags only, no features
are created when the document is loaded within an NLP
framework and the number of annotations would exceed

3XML-Doclet, http://code.google.com/p/xml-doclet/
4Maven Doclet, http://maven.apache.org/maven-1.x/
5jeldoclet, http://jeldoclet.sourceforge.net/

http://code.google.com/p/xml-doclet/
http://maven.apache.org/maven-1.x/
http://jeldoclet.sourceforge.net/

Figure 9: The JavadocMiner Pipeline for analysing the Quality of Source Code Comments

that of the SSLDoclet for the same amount of information.
This will actually have a negative impact on the amount of
work needed by the language engineers to make use of the
generated corpus.
To conclude, even though there exists a number of XML
generating doclets that can be downloaded from the net, we
feel that our SSLDoclet differs from the rest due to its ability
to generate XML output using a schema that is optimized
for further NLP processing, which is an application scenario
not targeted by existing efforts.

6. Conclusion & Future Work
In this paper, we presented a novel approach for using a
custom doclet and Javadoc to generate a corpus that can be
used as input to an NLP application. We emphasized the
benefits of representing the information found in Java source
code and in-line documentation using XML meta-data over
HTML to facilitate automated NLP analyses.
We discussed how the SSLDoclet is able to generate a corpus
using information found in both source code and in-line
documentation. We also showed how the corpus can be
used within existing text mining applications such as the
JavadocMiner (Khamis et al., 2010).
And finally, we compared our SSLDoclet with other doclets
that are currently published, and pointed out that it is the
first to be explicitly designed for generating a corpus that is
to be used within NLP applications. In particular, it is able
to better differentiate between an annotation, feature, and
entity, which the existing doclets are unable to do.
Future work is specifically needed in two areas: first,
marking-up more of the information provided by Javadoc

(for example, the information that exist in enumerations).
This can be achieved by implementing more services using
the Javadoc API. And second, enabling the user to generate
multiple documents (a corpora) using a single source direc-
tory containing multiple files. The SSLDoclet will parse
each source code file separately and generate an AST for
each Java class. While this will add functionality to the
SSLDoclet, we believe that it already provides significant
functionality for language engineers targeting NLP analysis
of source code and its inline comments.

7. References
Grigoris Antoniou and Frank van Harmelen. 2008. A Se-

mantic Web Primer. The MIT Press, 2 edition, March.
H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.

2002. GATE: an Architecture for Development of Robust
HLT Applications. Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguistics
(ACL).

Ninus Khamis, René Witte, and Juergen Rilling. 2010. Au-
tomatic Quality Assessment of Source Code Comments:
The JavadocMiner. In 15th International Conference on
Applications of Natural Language to Information Systems
(NLDB 2010). Cardiff University, June 23-25.

Douglas Kramer. 1999. API documentation from source
code comments: a case study of Javadoc. In SIGDOC ’99:
Proceedings of the 17th annual international conference
on Computer documentation, pages 147–153, New York,
NY, USA. ACM.

Erik T. Ray. 2003. Learning XML. O’Reilly & Associates,
Sebastopol, California, 2nd edition, September.

	Introduction
	Background
	Design & Implementation
	SSL Javadoc Doclet Design
	Marking Up Source Code
	Marking Up Source Code Comments

	Application and Evaluation
	SSLDoclet Benchmarks
	Example Application: The JavadocMiner

	Related Work
	Conclusion & Future Work
	References

