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Abstract
Today’s knowledger workers are often overwhelmed by the vast amount of readily available natural language documents that are potentially
relevant for a given task. Natural language processing (NLP) and text mining techniques can deliver automated analysis support, but
they are often not integrated into commonly used desktop clients, such as word processors. We present a plug-in for the OpenOffice.org
word processor Writer that allows to access any kind of NLP analysis service mediated through a service-oriented architecture. Semantic
Assistants can now provide services such as information extraction, question-answering, index generation, or automatic summarization
directly within an end user’s application.

1. Introduction
Information Retrieval (IR) is, in some respect, a solved prob-
lem: Users nowadays have immediate access to vast amounts
of information. Popular search engines, such as Google, can
deliver more documents in a fraction of a second than any
human can process in a lifetime. As (Simon, 1971) pointed
out, “A wealth of information creates a poverty of attention,”
and this statement certainly fits the information age. Practi-
cally no one dealing with large amounts of reports, literature,
drafts, articles and the like, can read everything they would
like to. This becomes a problem when decisions have to
be made and not all the information that is theoretically
available can be taken into account. It becomes a problem
when an expert or a reporter must gain an overview of a
large corpus of literature, be it news articles, opinion pieces
or technical reports, and has a very limited time frame.
While one might argue that retrieval speed and precision
of IR can still be improved, we believe the most important
advances in the near future will focus on improving the auto-
matic processing of retrieved information, thereby allowing
the human user to gain time for his actual task of evaluating
the information and creating new value from it. But although
natural language processing (NLP) and text mining research
has made impressive progress over the last decade, the de-
veloped technologies have not yet found wide adoption in
end-user tools commonly used for reading and developing
content. Knowledge workers1 in particular could make im-
mediate use of a wide selection of NLP services, such as
summarization, index generation, or question-answering, if
they just had access to them from their desktop tools, like
email clients, Web browsers, or word processors.
In this paper, we present a strategy for integrating any kind

1This term was coined by P. Drucker in 1959. Also known
as intellectual worker or brain worker, it emphasizes a worker’s
capability to work as an expert in a subject matter, rather than,
say, through physical labor. See, e.g., http://en.wikipedia.org/wiki/
Knowledge worker.

of NLP analysis service into a word processing application,
the OpenOffice.org2 Writer program. Based on an existing
service-oriented architecture, a plug-in created for Writer al-
lows to dynamically find, parametrize, and execute language
services. That is, in this work we are not concerned with
the development of new NLP services, but rather investigate
how any existing service can be integrated into an end user’s
tool. A simplified overview of this idea is shown in Figure 1.
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Figure 1: Invoking NLP services directly from a user’s client

Our approach allows for a complete reversal of common
knowledge acquisition processes: whereas today’s knowl-
edge worker has to leave his text processing application
to search for relevant information (e.g., through Google),
process the retrieved results manually, and then continue
working on his task, we propose to integrate knowledge re-
trieval, analysis, and content development into the end-user
client. Thus, a user does not have to interrupt his work-
flow but rather relies on external Semantic Assistants, which
provide NLP analysis services called directly from the end
user’s word processing application. These assistants can,
for example, search for relevant information on the Web
and produce a multi-document summary of the knowledge
relevant for the user’s current context.
This paper is structured as follows: In the next section,

2OpenOffice.org, http://openoffice.org
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we describe some application scenarios relevant for our ap-
proach in more detail. The design and implementation of our
NLP/word processing integration is covered in Section 3.
Example applications of the developed solution are pre-
sented in Section 4. Related work is discussed in Section 5.
Finally, conclusions are presented in Section 6.

2. Application Scenarios
In this section, we describe a number of application scenar-
ios to further motivate our approach of integrating NLP ca-
pabilities into a word processor. These scenarios are meant
to illustrate the everyday problems that people face in numer-
ous professions and activities. The actors in these scenarios
are all knowledge workers, meaning that they have to find,
identify, evaluate, and incorporate considerable amounts of
existing knowledge in order to do their work.

Scenario 1: Authoring and Analyzing Documents. Ed-
itors and journalists continuously face deadlines for deliv-
ering articles. Although relevant knowledge—such as pre-
vious articles, web pages, and research papers—are readily
available online, the typically vast number of hits delivered
by an Internet or desktop search makes it impossible to
review all documents manually. In this scenario, focused
multi-document summarization can help the user by present-
ing an extract of information relevant for the task at hand.
The generation of this kind of summary has been investi-
gated for several years within the Document Understanding
Conference (DUC)3 competition and lends itself very well
to an integration into an office tool: the user can simply
highlight a text segment containing questions or other perti-
nent context information (usually between one and several
sentences4), which is then used to find relevant documents
with an IR system (e.g., from the Web, a digital library, or
a local document repository). The summarizer can then
prepare a focused multi-document summary of these doc-
uments, which contains only those pieces of information
relevant for the context question(s). This processing can be
performed in the background after the user requested the
summary, thereby allowing him to continue work on other
parts of his document.
This idea can be further enhanced by adding machine trans-
lation tools into the NLP processing pipeline (see the DUC
tasks on cross-language summarization), thereby allowing
end users access to knowledge in languages they do not
speak themselves.

Scenario 2: Information Extraction. Often, knowledge
workers require only particular information from a set of
documents while working on a task. This might simply be a
list of person or company names or entity relation informa-
tion, e.g., between persons and events. This can be achieved
with off-the-shelf information extraction (IE) tools, such
as the ANNIE system delivered with the GATE framework
(Cunningham et al., 2002). Additionally, domain-specific IE

3Document Understanding Conference, http://duc.nist.gov
4An example for such a context is (from DUC 2005): “What

countries are or have been involved in land or water boundary
disputes with each other over oil resources or exploration? How
have disputes been resolved, or towards what kind of resolution
are the countries moving? What other factors affect the disputes?”

can support users in specific knowledge management tasks:
For example, a biomedical researcher might need a list of
all mutated proteins from a set of papers (Witte et al., 2007);
and a software engineer might need to find all method names
covered in a system’s documentation (Witte et al., 2008).
By integrating IE services, the user can either opt to extract
the information from a document he his currently working
on, or, like in the previous scenario, on a set of external
documents.

Scenario 3: Index Generation. Adding a classical book
index to a document is often tedious work, especially when
it has not been planned from the start. Simple NLP pipelines
can facilitate this task—for example, by performing noun
phrase (NP) chunking and building an inverted index from
the head noun (first level) and modifier (second level) slots.
Using the information extraction techniques mentioned
above, specialized indices can additionally be generated,
such as person or organization names. Integrated into the
word processing application, a draft index can be created di-
rectly within the document window, and then further edited
and refined by the user.
Index generation can also be applied to external documents:
instead of looking at text summaries of potentially relevant
documents for the current task, a user can also request the
creation of a book-type index from documents retrieved
through an IR engine, using this as a further navigational
aid.

Other NLP Services. The scenarios here are by no means
exhaustive—they simply illustrate how enormously useful
standard NLP techniques that are already available today can
become for an end user when integrated into a standard desk-
top tool. We expect that future NLP analysis services will
be designed directly for deployment in a service-oriented
architecture and thereby target the needs of end users even
better.

3. Design and Implementation
We now present our solution to the integration of word pro-
cessing and NLP services. In the first subsection, we briefly
describe our service-oriented architecture for NLP/client
integration. The second subsection then describes in detail
our integration of the OpenOffice.org Writer word processor
into this architecture. The service-oriented approach was
chosen for its ability to model NLP services at a high level
of abstraction, thereby hiding the technical aspects of their
implementation from the end-user clients. To allow the rec-
ommendation of NLP services based on the user’s context,
i.e., his language capabilities, current task, and client, we
provide an ontology model that connects these aspects with
available language services.

3.1. Service-Oriented System Architecture
To facilitate the integration of end-user (desktop) clients
with natural language processing services, we developed
a service-oriented architecture (SOA) that allows to easily
connect arbitrary clients with an NLP framework using W3C
Web Services.5 The design and implementation of this archi-
tecture is described in (Witte and Gitzinger, 2008). Here, we

5W3C Web Services, http://www.w3.org/TR/ws-arch/
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Figure 2: The Semantic Assistants architecture for integrating text analysis services and end-user clients

only provide a brief overview to illustrate the steps needed
for integrating a new client, in this case, a word processor.
An overview of the architecture is shown in Figure 2. It
is based on a typical multi-tier information system design.
Clients (Tier 1) provide access to an end-user. Here, we
only discuss the integration of a word processor, namely
the OpenOffice.org Writer application, but our architecture
has been designed to allow connections from any kind of
client. A client-side abstraction layer (CSAL) provided by
our architecture contains a number of pre-defined methods
commonly needed for integrating NLP into end-user clients,
such as finding available services and handling input/result
format conversions. Tier 2 is concerned with handling the
interaction between the clients and the NLP frameworks.
Since we rely on Web Services for the communication, a
web server handles the management of service discovery
and invocation, based on WSDL6 descriptions and SOAP7

messages. To connect with a concrete NLP framework, our
architecture contains an “NLP Service Connector,” which is
also part of Tier 2. The current version of our architecture
supports the GATE framework (Cunningham et al., 2002)
for NLP service execution, which forms Tier 3 of our ar-
chitecture (other frameworks, such as UIMA (Ferrucci and
Lally, 2004), can be integrated in the future). Resources
form Tier 4, which includes documents stored locally or on
a network (including the Internet), as well as metadata about
available NLP services, which are formally described using
an OWL-DL8 ontology.
To integrate a new client, the following four steps have to
be performed:

1. From the client application, import the Java archive
containing our implementation of the client-side ab-
straction layer (CSAL).

2. If necessary, tell the CSAL the address of the Web
service endpoint. The CSAL classes that need to know

6WS Description Language, http://www.w3.org/TR/wsdl
7Simple Object Access Protocol, http://www.w3.org/TR/soap/
8OWL Web Ontology, http://www.w3.org/TR/owl-guide/

the address have a default value for it.

3. Create a SemanticServiceBrokerService object,
which serves as a factory for proxy objects.

4. Create such a proxy object. This is your “remote con-
trol” to the Web service. You can call all methods that
have been published through the Web service on this
object.

We can now discuss how these steps are performed for a
concrete client, a word processor, to integrate it into our
architecture.

3.2. The OpenOffice.org Writer Plug-in
The OpenOffice.org application suite offers a mechanism
to add application extensions, or plug-ins. We used this
mechanism to integrate OpenOffice.org’s word processing
application Writer with our architecture, and thus equip the
Writer with Semantic Assistants (Figure 3).
Our primary goal for the Writer extension was to be able
to perform text analysis on the current document. This
text can, for instance, be a large document from which
information should be extracted, or a problem statement
consisting of a few questions, which serves as input for a
question-answering (QA) Semantic Assistant. Especially
for the last use case, it must allow a user to highlight part of
a document (e.g., a question) and be able to pass only the
highlighted part as input to a language service. Furthermore,
the extension must offer the possibility to specify parameters
that need to be passed to a selected NLP service.
An OpenOffice.org plug-in is basically a zip file with specific
contents and certain descriptions of these contents. The
files and directories contained in our zip file are shown
in Figure 4. Every plug-in has to include a META-INF
directory, which contains a file called manifest.xml. This
XML file lists the elements that come with this plug-in; The
concrete manifest file for our plug-in is listed in Figure 5.
We can see that it defines three file-entry elements specifying
the type and location of the following files:

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
http://www.w3.org/TR/owl-guide/


Figure 3: The new “Semantic Assistants” menu entry in OpenOffice.org Writer allows to find and execute NLP services

Figure 4: The plug-in file structure

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE manifest:manifest PUBLIC
"-//OpenOffice.org//DTD Manifest 1.0//EN" "Manifest.dtd">
<manifest:manifest
xmlns:manifest="http://openoffice.org/2001/manifest">
<manifest:file-entry

manifest:media-type=
"application/vnd.sun.star.configuration-data"

manifest:full-path="Addons.xcu"/>
<manifest:file-entry

manifest:media-type=
"application/vnd.sun.star.configuration-data"

manifest:full-path="ProtocolHandler.xcu"/>
<manifest:file-entry

manifest:media-type=
"application/vnd.sun.star.uno-component;type=Java"

manifest:full-path=
"ProtocolHandlerAddon_java.uno.jar"/>

</manifest:manifest>

Figure 5: The manifest.xml file for our plug-in

Addons.xcu. This XML file defines how the plug-in should
be integrated with OpenOffice.org. In our case, it con-
tains a menu definition, specifying that the menu should
only appear in the Writer application. For each menu
item, we specify which messages should be broadcast
throughout the OpenOffice.org runtime system when
the menu item is activated.

ProtocolHandler.xcu. This XML file specifies that the
messages defined in Addons.xcu should be handled
by an object of a certain class. This class is provided in
the Java archive and must adhere to a certain interface.

ProtocolHandlerAddon java.uno.jar. This Java archive
contains the actual functionality of the plug-in. It holds
classes responsible for receiving the messages gener-
ated by the menu items, as well as classes responsible
for the interaction with the client-side abstraction layer.

Our plug-in creates a new menu entry “Semantic Assistants,”

as shown in Figure 3. In this menu, the user can inquire
about available services, which are selected based on the
client (here Writer) and the language capabilities of the de-
ployed NLP services (described in service metadata). The
dynamically generated list of available services is then pre-
sented to the user, together with a brief description, in a
separate window, as shown in Figure 6. Note that the inte-
gration of a new service does not require any changes on
the client side—any new NLP service created and deployed
by a language engineer is dynamically discovered through
its OWL metadata maintained by the architecture and so
becomes immediately available to any connected client.

Figure 6: List of available semantic assistants

The user can now select an assistant and execute it. In
case the service requires additional parameters, such as the
length of a summary to be generated, they are detected by
our architecture through the OWL-based service description
and requested from the user through an additional dialog
window. An example, for the Web Retrieval Summarizer
assistant, is shown in Figure 7.

Figure 7: The parameters dialog, which appears when a
Semantic Assistant requiring further input is invoked

Once requested, the language service is executed asyn-



chronously by our architecture, allowing the user to continue
his work (he can even execute additional services). The se-
quence diagram in Figure 8 shows the execution of a service
through the various tiers described in Section 3.1. Note
that all low-level details of handling language services, such
as metadata lookup, parametrization, and result handling,
are hidden from the client plug-in through our client-side
abstraction layer.

Client Abstraction Layer Server Language Service Resources

Invoke service

Invoke service

Metadata lookup

Metadata

Run service

Store result

Result stored

Return

Collect result

Result

Transform result

Response Message

Refined Response

msc Invoking a Single Language Service

Figure 8: The client invokes a language service and receives
a result

4. Application
One direct use case of our Semantic Assistants is to sat-
isfy information needs of a knowledge worker. As mo-
tivated in the introduction, language services can deliver
focused analysis results directly within the client—here a
word processor—needed to perform a task, rather than in-
terrupting the user’s workflow by forcing him to perform an
external (Web) search.
For example, a user might develop a report on the global
climate change and needs information on the role of “DMSP
in the Atlantic marine biology.”9 With our OpenOffice.org
plug-in, the user can simply highlight this phrase in the
Writer editor window and select the “Web Retrieval Sum-
marizer.” This is a compound Semantic Assistant, which
performs two functions: In a first step, a selected number
of hits from a Yahoo! search using the highlighted phrase
is retrieved to build a corpus on-the-fly. This corpus is then
fed into the context-sensitive multi-document summarizer
ERSS (Witte and Bergler, 2007) to produce a summary. All
these actions are performed in the background, allowing
the user to continue with other parts of his report. When
the summary is ready, the architecture notifies the plug-in,
which then presents the generated summary in a new win-
dow, as shown in Figure 9. The user can now analyze, edit,
or copy parts of the summary within his workflow.
Note that our architecture does not require that the user’s
word processor and the NLP service reside on the same
physical machine. Although this is a possible configuration
for personal knowledge management, the underlying Web
Service framework also allows to access specific analysis
tools from an external service provider. For example, a

9DMSP stands for “Dimethylsulfoniopropionate” and is a com-
ponent of the organic sulfur cycle.

university might want to deliver question-answering services
targeted to its students, answering questions about courses
and facilities. A commercial scientific publisher might want
to offer a “related work finder” analysis service, similar to
the one presented by (Zeni et al., 2007), to scientists writing
research papers or proposals.

5. Related Work
There is not much previous work that deals with the software
engineering aspects of integrating NLP services into existing
desktop tools.
In their article “Just-in-time information retrieval agents”
(JITIR agents), (Rhodes and Maes, 2000) presented a plug-
in for the Emacs text editor called the Remembrance Agent
(RA). The RA presents, in a special sub-window at the
bottom of the Emacs window, a small list of documents
that are related to the document currently being written or
read. These suggestions can come from multiple different
databases or e-mail archives, and are periodically updated.
More concretely, every few seconds, an Information Re-
trieval (IR) process is triggered, performing a search on the
specified databases based on, for example, the last 500 words
written or the e-mail message that has just been opened for
viewing. The results of this IR process are then ranked and
listed in the sub-window at the bottom. The second JITIR
agent presented in the article, Margin Notes, works by the
same principle as the Remembrance Agent. It rewrites dis-
played Web pages and adds annotations (e.g., links to related
e-mail documents) in a separate column on the right to the
Web page.
(Colbath and Kubala, 2003) presented TAP-XL, an “auto-
mated analyst’s assistant.” The system’s front end is an
extension to Microsoft Word. The user writes an initial
problem statement, which the system analyzes and uses to
retrieve possibly related articles or documents from Internet
sources. Unlike with the Remembrance Agent mentioned
above, which performs its work in the background without
the user actively triggering that work, the user’s interaction
with the TAP-XL system is more conscious, as he actively
poses a problem statement that the system processes. The
processing elements that make TAP-XL work form a dis-
tributed system of Web Services. Among these services are
machine translation, document clustering, multi-document
summarization, and fact extraction. The results of these com-
ponents are stored in a central repository, from where they
are accessible to downstream technologies like the word
processing front end. The documents to feed this whole
system come from a commercial source, as well as from
Web harvesting.
These approaches differ from our work in that they are
strictly bound to one field of application (e.g., word pro-
cessing for TAP-XL). By providing an open, client-server,
standards-based infrastructure, we can bring NLP to the end
user practically regardless of what kind of application she is
using. Moreover, the mentioned text assistants’ functionality
is confined to providing possibly relevant documents. In
contrast to that, we want to offer a theoretically open-ended
number of NLP services, including machine translation,
information extraction, automatic summarization, and auto-
matic indexing. While referenced applications like TAP-XL



Figure 9: The result of the “Web Retrieval Summarizer” Semantic Assistant, answering the user’s question, is displayed as a
new document

have their NLP functionality largely built right into them,
we follow a different approach in that we clearly distinguish
between service requester (the client), the requested service
(semantic text assistant), and the underlying architecture.
The services offered as part of our architecture are entirely
self-contained and unaware of anything that is going on “on
the outside.” On the other end of the communication, the
client program is initially unaware what semantic services
it can make use of. It only knows how to talk to the Web
Service connecting the two ends. This separation simplifies
client development, bears no influence on the NLP develop-
ment, and allows for higher flexibility.

6. Summary and Conclusions
Today’s knowledge workers face constant “information over-
load.” Many NLP techniques and text mining systems have
been developed to address the (semi-)automatic analysis of
natural language texts—but none of these are of any use
to an end user if they are not readily accessible within the
applications commonly found on today’s desktop environ-
ments. In this paper, we described a novel solution for the
integration of any kind of NLP service into a word proces-
sor application. Our underlying architecture together with
the created plug-in perform the “heavy lifting,” so to speak,
of software engineering work necessary to bring semantic
analysis tools to end users. Through its service-oriented ap-
proach, it decouples the creation of NLP pipelines and their
access from connected clients, so that NLP developers do
not need to be concerned with the technical details on how
their created services will become available within desktop
applications, and client developers likewise do not need to
know about the intricacies of developing natural language
processing pipelines, since all they see are Web Service de-
scriptions of these services. The developed architecture has
been developed based on open standards and open source
tools and will also be made available as free software.
Further improvements on the plug-in side will focus on
enhanced formatting of NLP results, which can come in
diverse formats (e.g., unstructured summaries, structured
tables, XML or OWL files). Further plug-ins extending
other end-user clients with NLP services are under investi-
gation, like for an email client, Web browser, and software

development environment.
On the architectural side, a more detailed handling of the
user’s current context using our ontological model will allow
for a more fine-grained pre-selection and -parametrization
of available language services. Together with automated
reasoning capabilities of OWL-DL ontology reasoners, an
agent-like approach becomes possible, where relevant ser-
vices are not only executed explicitly, but can also be auto-
matically scheduled by the architecture based on the user’s
current behavior.
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