
The ReqWiki Approach for
Collaborative Software Requirements Engineering

with Integrated Text Analysis Support
Bahar Sateli Elian Angius René Witte

Semantic Software Lab
Department of Computer Science and Software Engineering

Concordia University, Montréal, Canada

Abstract—The requirements engineering phase within a soft-
ware project is a heavily knowledge-driven, collaborative process
that typically involves the analysis and creation of a large number
of textual artifacts. We know that requirements engineering has
a large impact on the success of a project, yet sophisticated
tool support, especially for small to mid-size enterprises, is still
lacking. We present ReqWiki, a novel open source web-based
approach based on a semantic wiki that includes natural language
processing (NLP) assistants, which work collaboratively with hu-
mans on the requirements specification documents. We evaluated
ReqWiki with a number of software engineers to investigate the
impact of our novel semantic support on software requirements
engineering. Our user studies prove that (i) software engineers
unfamiliar with NLP can easily leverage these assistants and (ii)
semantic assistants can help to significantly improve the quality
of requirements specifications.

Keywords-Software Requirements Engineering; Natural Lan-
guage Processing; Semantic Wiki; Quality Assurance

I. INTRODUCTION

Software requirements engineering (RE) encompasses the
tasks related to eliciting, evaluating, and recording the needs
of various stakeholders of a software project. A software
requirements specification (SRS) document containing clear
and precise definitions of what stakeholders want is critical to
building “the right product” and consequently the success of a
project [1].

A large number of these specifications – up to 90% according
to industry statistics [2] – are written in natural language,
typically with the help of templates, such as use cases or user
stories. Quality assurance (QA) is an integral part of require-
ments engineering [1]. However, due to the unstructured nature
of natural language, QA needs to be performed manually and
is therefore expensive and time-consuming. Natural language
processing (NLP) has long been regarded as a potentially
significant tool to support the requirements engineering phase
[3], but so far has not been widely adopted.

The overall vision of our work is to support modern software
development teams with a sophisticated requirements engineer-
ing tool that facilitates collaborative, distributed development,
has built-in support for automated quality assurance on natural
language text through semantic analysis, is easy to learn, and
integrates well with heterogeneous web-based environments.
ReqWiki is our solution presented here: It is the first open

source system that seamlessly integrates a wiki-based platform
with semantic knowledge representation for formal queries and
reasoning with NLP web services for text analysis. These NLP
services embody artificial intelligence (AI) ‘assistants’ that
work collaboratively with the human users on a specification,
within a single, cohesive interface. Several assistants are
available by default, such as the detection of a number of
common SRS defects, and custom NLP pipelines can be easily
deployed through a service-oriented architecture (SOA).

To evaluate the usability and effectiveness of ReqWiki, we
performed an evaluation with several project groups from two
university courses in requirements engineering: one at the
undergraduate level, one at the graduate level. In this study,
we analyzed the usability of NLP methods in the RE process
and their impact on the quality of a specification. The results
demonstrate both the usability for software engineers, who are
typically not trained in natural language processing techniques,
as well as the positive impact on the quality of SRS documents.

Our work is significant for two main reasons: (i) we
developed the first comprehensive open source architecture
that combines a user-friendly wiki system with state-of-the-art
semantic technologies including natural language processing.
It is made available under a standard open source license at
http://www.semanticsoftware.info/reqwiki and can be imme-
diately deployed in a software project; and (ii) we present
the first user study on the usability of text analysis services
for software engineers and their impact on the quality of a
requirements specification.

II. BACKGROUND

In this section, we briefly introduce foundations from soft-
ware requirements engineering and natural language processing.

A. Software Requirements Engineering

Requirements Engineering (RE) is one of the most important
phases of a software project: We know that its success or failure
is highly dependent on successful requirements engineering,
with industry statistics pointing to insufficient RE as the
root cause in more than 50% of all unsuccessful software
projects [1].

When an initial set of requirements has been elicited and
evaluated, it can be captured in a requirements document.

http://www.semanticsoftware.info/reqwiki


Database

Wiki
Ontologies

Language

Descriptions

Service

W
e

b
 S

e
rv

e
r

W
ik

i−
S

A
 C

o
n

n
e

c
to

r

Web Server

MediaWiki
Engine

Extensions

Semantic Forms

Semantic Assistants

Semantic MediaWiki

N
L

P
 S

e
rv

ic
e

 C
o

n
n

e
c

to
r

NLP Subsystem

Semantic Assistants Server

C
lie

n
t−

S
id

e
 A

b
s

tra
c

tio
n

 L
a

y
e

r

...

Wiki SystemClientUser Semantic Assistants

JavaScript

Browser

Information Extraction

Requirements QA

Readability Metrics

Writing Quality

Fig. 1. ReqWiki multi-tier system architecture overview: user interface, semantic wiki system, and Semantic Assistants server for NLP services

Natural language (NL) specifications continue to be the most
commonly used form (as opposed to formal models, based
on a logical framework), accounting for up to 90% of all
specifications [2]. However, natural language specifications are
prone to a number of errors and flaws, in particular due to the
ambiguity inherent in natural language [1]. This is partially
addressed by adopting particular templates and writing styles,
such as use cases or user stories. Use cases [4] have become
one of the most widely used forms of requirements specification.
Writing good use cases requires an understanding of their core
concepts (actors, goals, scenarios, etc.), as well as associated
writing rules [5].

However, defects are still frequent and the cost of finding and
fixing them increases from each engineering stage to the next
(requirements, design, implementation, testing, deployment,
maintenance) [5]. This is addressed by requirements quality
assurance (QA), also known as requirements validation [1].
The goal of QA is to verify the requirements artifacts produced
during elicitation, evaluation, and specification, both in terms
of quality (do they follow documentation guidelines and
templates, are they complete, free of defects, omissions, etc.)
and objectives (do the requirements capture the stakeholders’
actual needs and wishes).

While formal specifications can be readily verified with
software tools, the quality analysis of natural language re-
quirements has traditionally been performed manually, e.g., by
inspections and review boards [1]. Below, we will highlight
the most important quality assurance concepts and explain
how and where NLP methods can contribute in the software
requirements specification process.

B. Natural Language Processing

Natural Language Processing (NLP) is a branch of computer
science that employs various artificial intelligence techniques
to process content written in natural language (NL). One of
the applications of NLP is text mining, the process of deriving
structured information from text. Developing text mining
systems is facilitated through the use of frameworks, such
as the General Architecture for Text Engineering (GATE) [6].
Using these frameworks, sophisticated text mining applications

can be developed, not only to derive patterns within the
unstructured data, but also to enhance information management
of a system by finding content based on meaning and context,
using technologies from the domain of semantic computing.

Since requirements specifications are most commonly written
in natural language, they have recently gained attention by
researchers in the field of NLP [2]. For example, the work by
Hussain et al. [7] shows how ambiguity in SRS documents can
be detected through a decision tree-based classifier; Gervasi
and Zowghi discuss the detection of inconsistencies [8]; Sawyer
et al. look at supporting concept recognition [9]; and Kof [3]
investigates the identification of goals and the construction of
domain models from NL documents.

Within this work, we largely rely on existing off-the-shelf
NLP components, with some customizations for RE. Our main
contributions are (i) the seamless integration of these techniques
into a wiki-based requirements development system; and (ii)
investigating how software engineers and other end users, which
are not necessarily familiar with NLP, can interact with these
techniques in order to improve the quality of a SRS.

III. DESIGN

We now detail the requirements for our ReqWiki system and
subsequently describe the design decisions and overall system
architecture that we derived from these requirements (Fig. 1).

A. Requirements Analysis

What precisely are the requirements for a RE environment,
where users can benefit from semantic capabilities and NLP
techniques?
Collaborative Environment (R1). In contemporary contexts,
in particular global software development where stakeholders
are spatially separated, a strong need exists for a collaborative
tool that provides the means for asynchronous communication.
Users must be able to author and edit requirements, with clear
tracing of their changes in the system.
Consistency (R2). Due to the different backgrounds and
perspectives of users, which include diverse groups such as
non-technical stakeholders and system developers, as well
as different terminologies used by different parties in an



Thing

Problem

has subclass

Stakeholder

has subclass

Responsibility

has subclass ProductPosition

has subclass

Dependency

has subclass

Assumption

has subclass

Need

has subclass

Feature

has subclass

Actor

has subclass Goal

has subclass

UseCase

has subclass Glossary

has subclass

Requirement

has subclass

TestCase

has subclass

affects

belongs to

depends on

satisfiesrelates to

belongs to

interests

hasis used by

relates to Functional Requirement

has subclass

Non-Functional Requirement

has subclasstests

Fig. 2. The ReqWiki ontology modeling the domain of Software Requirements Specifications (SRS)

RE process, the system must provide a consistent approach
to unambiguously describe system concepts and their inter-
relationships.
Semantic Support (R3). In addition to supporting natural
language for the SRS documents, the system shall provide the
means to formally describe the SRS entities, both manually
and in an automatic manner, in order to make them accessible
to machines for automatic processing.
Quality Assurance (R4). Due to the inherent ambiguity and
vagueness of natural language used in SRS documents, the
system shall provide the users with the ability to perform
automatic quality assessment on the documents’ content to
detect and correct defects.
Seamless Integration (R5). The integration of semantic and
NLP capabilities in the system shall be seamless to end users
and must not assume any background knowledge in NLP or
semantic technologies.
Service Independence (R6). Users must be able to employ
any arbitrary NLP service that is best suited for their context.
This means that the system must allow various NLP services
to be added to the system as needed.
Support for Standard Methodologies (R7). To conform to
standard methodologies in RE, the system must be able to
adapt itself to contain the artifacts pertinent to the selected
underlying methodology, in particular the Unified Process (UP)
[10] and Use Case models [4], [5].

B. ReqWiki Architecture

A wide range of tools, ranging from conventional office
suites to dedicated commercial tools, are used for requirements
engineering purposes. Wikis, as an affordable, lightweight
documentation platform have demonstrated their capabilities
in distributed requirements elicitation [11] and documentation
[12]. We also adopted a wiki engine at the core of ReqWiki to
provide a collaborative environment (R1) for SRS development.
This brings a number of advantages, including wide acceptance
among users, mainly due to its lightweight nature, ease of use,
familiarity, and simple markup language [11]. Because a wiki
system is essentially a web-based application, it is especially

suited for distributed RE environments, as it requires no special
tools other than a web browser on the user’s side.

However, unadorned wikis can not fulfill the additional
requirements, in particular consistency management (R2),
semantic support (R3), and natural language processing (R4,
R5). For this, we add two more concepts, detailed below: a
semantic data model and NLP web services. Fig. 1 shows
the complete system architecture, integrating a semantic wiki
system with custom plug-ins (middle), as well as the Semantic
Assistants NLP web services framework (right). The details of
their integration are described in the implementation section
below.

C. Semantic Model for SRS

Ontologies provide for formal specifications of a shared
conceptualization, consisting of vocabularies and relations:
In the case of ReqWiki, our domain of discourse is require-
ments engineering. In order to ensure consistency (R2) and
compliance with a standard methodology (R7), both within
and between requirements artifacts, we formally model these
artifacts (e.g., use cases in the UP), as well as their entities
(e.g., actors, goals) and their inter-relationships using the web
ontology language (OWL).1 This formal model is particularly
useful when using semantic wikis, which allow users to import
formal ontologies to the wiki, and thereby connect unstructured
textual descriptions with their corresponding entities. This
provides in part for the required quality assurance (R4) through
the semantic constraints modeled in the ontology; Additional
quality assurance is provided through the NLP analysis services
described below.

1) Ontological Formalization of SRS: We discussed in our
system-to-be requirements that a consistent understanding
(R2) of the RE concepts and terminology is essential in
an RE process. In ReqWiki, we formally model our system
entities and their relationships by defining an ontology written
in OWL. Our ReqWiki ontology (Fig. 2) defines the main
concepts in the unified process and use case methodology

1Web Ontology Language (OWL), http://www.w3.org/2004/OWL/

http://www.w3.org/2004/OWL/


Semantic

Assistants

Dynamic tables generated from semantic queries

Links to semantic forms

Top−level
pages

extension

Fig. 3. The ReqWiki main user interface, integrating textual content, semantic knowledge, and access to NLP services

for requirements engineering. This ontology provides a formal,
semantic description of concepts stored in the wiki (e.g., actors,
goals, use cases, test cases, features) and their relationships
with each other. For example, we can now formally establish
the relations between a Use Case and its Actors.

Once the content of a ReqWiki installation is enriched with
semantic metadata, we can use this ontology to semantically
query it, e.g., to retrieve a list of all actors in a wiki (R3): This
is an important advantage of semantic approaches over standard
wikis or textual documents, where a list of all actors, goals, or
use cases in a SRS could only be manually curated, but not
automatically generated and updated. In addition, reasoning
capabilities can be added to the system to automatically detect
inconsistencies and conflicts between entities.

2) Automatic Traceability: Motivated by maintainability
and liability project factors, traceability is the degree to which
various software artifacts in a developing system are interrelated
with each other [1]. In a collaborative and volatile environment
such as RE, traceability ensures the rationale for all artifacts
are properly accounted for towards building “the right product”.
Manually creating and updating these links, for example, with
cross-references between documents, is highly time-consuming
and error prone. Hence, we aim to automatically generate
and update traceability links as far as possible. Additionally,
it must be possible to reference requirements artifacts from
those produced in subsequent phases, such as design and
implementation. Relying on the populated ontology, ReqWiki

supports the automatic creation of three forms of traceability
links: semantic links inside the wiki, query-based links, and
revision links.

For the first type, semantic concepts defined in wiki pages
are presented as hyperlinks, so that users can navigate to them
and retrieve their corresponding content. When defining these
semantic concepts, the forms themselves already constrain
field input to existing (non-empty) ontology instances of the
expected field type. Thus, this form of traceability enforces link
correctness and simplifies verification and validation phases,
since dead links and unlinkable artifacts are easily detectable.

For the second type, using the same semantic metadata in
our ontology, we can insert in-line queries in wiki pages to
create dynamic tables (e.g., use cases vs. actors) from the
ontological metadata stored in a wiki (shown below).

A third form of traceability available in ReqWiki is its
revision control capability that records page changes: This not
only indicates which author changed what content at which
times, but also allows reverting to previous revisions in case
of erroneous modifications.

D. NLP Services for Requirements Engineering

The second major component of our approach is the idea of
NLP services that support users in developing the requirements
specification. In accordance with R5, we aim to offer these
analysis capabilities directly within our wiki, to avoid users
having to switch to a different text mining application: This



Fig. 4. Example wiki Semantic Form (top) used to generate embedded RDF data (bottom)

integration is achieved through our Wiki-NLP architecture [13].
Furthermore, we want to support setting up an installation

with custom NLP services, e.g., for domain-specific analysis
pipelines or custom (company or organization-specific) quality
rules (R6). By developing a service-oriented architecture,
new analysis services can be deployed and then dynamically
discovered by the users. For this, we integrated the Semantic
Assistants framework, which can broker any deployed NLP
pipeline as a standard web service [14]. As described below,
the wiki can then dynamically discover the available services
and offer them to a user, or even execute them pro-actively.

The semantic NLP services also aid users in developing
SRS by automatically annotating wiki pages with semantic
metadata extracted from their content (R3, R4). Within our
initial experiments, we made a number of both general and
requirements-specific NLP services available to ReqWiki users:
Writing Quality Assessment performs grammar and spell
checking on the content and provides suggestions for improve-
ments, where possible. This service integrates the After The
Deadline [15] tool and helps ReqWiki users find spelling and
grammatical mistakes, as well as passive voice defects, in their
requirements specification documents.
Readability Assessment measures the readability of a given
text based on standard metrics, like Flesch and Kincaid [16].
This service provides users with an overall readability score of
the content they have produced, indicating how hard to read
and comprehend their text is for other stakeholders. It also can
be used to trace the readability over time [17].
Requirements Quality Assurance is a service developed
based on the NASA ARM requirements quality metrics [18]. It
detects SRS defects like Options, Directives or Weak Phrases
in a document. By using this service, users have the chance

to automatically find these defects in their specifications and
correct them, resulting in a higher quality SRS document.
Document Indexer creates a back-of-the-book style index
of the SRS content as a new wiki page. This service builds
on MuNPEx,2 an open source tool that groups words into
noun phrases, to generate an inverted index, with entries
automatically linked to wiki pages. Users can compare the result
of this service to the glossary section of the SRS documents
to check its completeness.
Information Extractor performs named entity extraction on
wiki pages, based on the ANNIE system [6]. This service can
aid users by automatically extracting named entities, such as
persons, organizations or locations, which is especially useful in
analyzing existing domain documents during early requirements
analysis phases.

Based on the Semantic Assistants server settings configured
in ReqWiki, the list of available NLP services is dynamically
generated and provided in a drop-down box (Fig. 5). A user
then has the option to view a brief description of what each
service does and customize the service execution by providing
additional runtime parameters. New services only need to be
deployed on the Semantic Assistants server and then become
immediately accessible by all connected wiki clients.

IV. IMPLEMENTATION

In this section, we describe the implementation of our
ReqWiki system. In particular, we show how the concepts of
wikis, semantic markup, and NLP services connect together to
make ReqWiki into an intelligent, agile authoring environment
for software specifications (Fig. 3).

2MuNPEx, http://www.semanticsoftware.info/munpex

http://www.semanticsoftware.info/munpex


Fig. 5. Selecting one of the available NLP services in ReqWiki

A. Wiki Engine and Extensions

ReqWiki is powered by the well-known MediaWiki3 engine,
which allows additional functionalities to be added to its
core engine by installing extensions (Fig. 1). In ReqWiki, we
use a number of these extensions to add semantic and NLP
capabilities to its wiki engine: To provide semantic support,
we integrated Semantic MediaWiki (SMW).4 This extension
allows the ReqWiki content to be enriched with semantic
metadata using the SMW syntax, queried with in-line queries,
and exported in the RDF5 format. In order to reduce the learning
curve for users when using ReqWiki, we also make use of the
Semantic Forms6 extension, which allows them to enter and edit
semantic wiki content using web forms, instead of working with
raw markup. In addition, semantic forms allow users to create
structured data with semantic markup by populating a pre-
defined set of templates. NLP capabilities are provided to the
MediaWiki engine through installing the Semantic Assistants
extension, described in Section IV-D.

B. Semantic Markup and Forms

In order to support the standard use case methodology and
other artifacts from the UP [10] (R7), we developed a number
of semantic forms that support users in creating the main UP
artifacts: Vision Document, Supplementary Specification, and
the Use Case model [5], while at the same time automatically
creating the required semantic metadata. Particular care was
taken to reflect the original UP templates in ReqWiki, so that
software engineers familiar with these standard artifacts can
adopt them immediately – see Fig. 6 for a typical part of a
word processor template and Fig. 4 for its translation into
Semantic Forms.

We associated the semantic forms and wiki templates
with their corresponding concepts in our ontology (cf. Sec-
tion III-C1) using semantic properties defined in ReqWiki.
For example, according to our ontology, each Goal entity

3MediaWiki, https://www.mediawiki.org
4SMW, http://semantic-mediawiki.org/
5Resource Description Framework (RDF), http://www.w3.org/RDF/
6Semantic Forms, http://www.mediawiki.org/wiki/Extension:Semantic

Forms

in ReqWiki is related to one or more Actor instances by a
belongs to object property. Therefore, whenever a goal instance
is created using its corresponding semantic form, the resulting
page contains semantic markup that relates the goal entity to the
specified actor instances. Each field in the form is associated
with a specific semantic property inside the wiki and once the
data is saved, the input content is automatically enriched with
semantic metadata using the SMW syntax. Moreover, for the
form fields that are associated with a semantic property, the
Semantic Forms extension also provides an auto-completion
feature. For example, when a user is filling an actor field in
the use case form, all the existing actor instances are queried
inside ReqWiki and presented in a list format. This feature not
only brings further convenience when using ReqWiki, but also
prevents defects, like different spellings and punctuations, for
the same concept.

C. Templates and Queries

To display the semantic form-generated data, we defined
templates that format the content. As an example, the top half
of Fig. 8 shows part of a use case (UC) that was entered via a
Semantic Form, including links to the semantic entities, like
actors and stakeholders.

An important feature of the templates are embedded queries
that help to keep the specification up-to-date, without any
manual effort required by the user. As an example, the UP
Supplementary Specification templates contain a number of
traceability tables (cf. Section III-C2) that connect various

Fig. 6. Original Word Processor Template Example

https://www.mediawiki.org
http://semantic-mediawiki.org/
http://www.w3.org/RDF/
http://www.mediawiki.org/wiki/Extension:Semantic_Forms
http://www.mediawiki.org/wiki/Extension:Semantic_Forms


1 {{#ask: [[Category:Features]]
2 | ?BelongsTo=Need
3 | ? = Feature
4 | format= table
5 }}

Fig. 7. Automatic traceability links in ReqWiki: Embedded SMW query
(top) and resulting Feature-Need Table (bottom)

artifacts, e.g., user needs vs. system features [5]. We can auto-
matically extract these relationships from the wiki’s semantic
data through an embedded query, as shown in Fig. 7. Therefore,
traceability matrices that would have been manually created
in traditional SRS documents can automatically be kept up-to-
date, since the queries are processed every time the page is
requested.

D. Semantic Assistants

NLP capabilities are provided in ReqWiki through the Seman-
tic Assistants architecture [14] as shown in Fig. 1. The Wiki-SA
Connector [13] is the main component that allows ReqWiki
to invoke any arbitrary NLP service available in the Semantic
Assistants NLP subsystem. Technically, the Wiki-SA Connector
is a proxy server that uses a number of J2EE technologies
to intercept the communication between ReqWiki and the
Semantic Assistants web server. When the proxy is enabled
on the wiki via the Semantic Assistants extension, all the
service invocation requests are sent from ReqWiki to the Wiki-
SA Connector component and the component in turn makes
the actual service calls to the Semantic Assistants web server
through the Semantic Assistants client-side abstraction layer.
Eventually, the results of a service execution are transformed
to wiki markup by the connector component and written back
to the ReqWiki database.

As a proxy server, the Wiki-SA Connector also intercepts
the communication between the ReqWiki engine and the user’s
browser. This means that once the proxy is requested by the
user, the connector component retrieves the demanded wiki
page from the ReqWiki database on behalf of the browser. Then,
the proxy injects service inquiry and invocation capabilities
into the page on-the-fly using JavaScript and sends it back to
the user’s browser. This approach creates the impression that
the user is still using the native interface of the wiki, whereas
the page is served by the proxy with the Semantic Assistants
user interface depicted in Fig. 5, embedded at the bottom of
the page.

The connection to the Wiki-SA Connector is made available
in ReqWiki through an additional menu item that triggers a

request call to proxy the wiki page for the user. The new menu
item is introduced to the underlying MediaWiki engine through
a lightweight Semantic Assistants extension. In addition to
the new menu in the wiki, the Semantic Assistants extension
also introduces a number of predefined MediaWiki templates
that are used to present various UP artifacts and the results
retrieved from the NLP service invocations. Using templates
in the wiki introduces uniformity and consistency for ReqWiki
entities, in addition to providing a clear separation between
the data and its view. Moreover, it bundles maintenance efforts
and changes to the presentation of entities for ReqWiki in one
place.

V. APPLICATION

In this section, we describe the application of our ReqWiki
system in a typical RE process. In order to use ReqWiki, a
MediaWiki instance needs to be installed, along with the SMW
and Semantic Forms extensions added to its engine. Semantic
and NLP capabilities are then provided to the core engine by
installing the Semantic Assistants extension. This extension
will restructure the wiki navigation menu and import the top-
level pages, the semantic forms and the semantic property
pages to the wiki repository.

A. Writing a specification with ReqWiki

In the current default installation, ReqWiki features three
top-level wiki pages that are considered the entry points to
the SRS documentation platform. They have been designed
to guide stakeholders through the RE process (Fig. 3). For
each top-level page, a corresponding “talk” page – provided by
the MediaWiki engine – is also available for users to discuss
contradictory ideas and leave notes for other stakeholders. The
top-level pages are as follows:
• A Vision page to define the product position, stakeholders,

assumptions, dependencies, needs, and features;
• a Use Case page to define actors, goals, and use cases;
• a Supplementary Specification page to define functional

and non-functional requirements, standards, legal notes,
test cases and traceability links.

Each of these top-level pages is divided into multiple sections.
Users can manually edit the static sections content, such as
the introduction to the SRS document. The dynamic sections,
on the other hand, are populated by the pre-defined queries
embedded in the page markup every time the page is requested
by a user. This way, it is ensured that the top-level pages are
always presenting the latest state of a ReqWiki’s content. In
addition, a list of user-defined terms is automatically generated
at the bottom of all three top-level pages and presented as a
glossary to aid users in reflecting about the correct usage of
the terms. The presence of this feature in ReqWiki helps to
establish a common language among stakeholders and promotes
consistency.

Each entity in ReqWiki, like a use case description, is
uniquely identified by a URI in the system and can be retrieved
via its title or the full-text search feature that the MediaWiki
engine offers. At this point, users can start defining entities



Fig. 8. Results from the NLP services ‘Readability Metrics’ and ‘Writing Quality’ executed on a use case, stored inside a ReqWiki page

like actors or goals, by clicking on the provided links in the
top-level pages. For example, in the Use Case page, a user can
define a new use case description by clicking on the “Create a
use case” link. The link takes the user to the corresponding
semantic form to define use case attributes, such as actors
or main success scenario. Once the user saves the form, a
new page with the use case description is created in the wiki
and the user input data embedded in the pre-defined ReqWiki
template for a use case is stored in the generated page. The
new page is automatically annotated with semantic metadata,
so when the user navigates back to the top-level Use Case
page, he will see the new use case in a table that is generated
by the in-line query embedded in the page.

B. Invoking NLP Services

In order to perform an NLP analysis, like quality assessment,
on the SRS content, a user first clicks on the ‘Semantic
Assistants’ link in the wiki menu (Fig. 3, left). This interaction
triggers the proxy to inject the NLP interface to the user’s
browser so that he can select a service to invoke on the ReqWiki
content (Fig. 5). Additionally, the user can choose a place for
the results to be written. Optionally, using the collection feature
in the Semantic Assistants NLP user interface, the user can
browse to other pages of the wiki, add them to his collection,
and invoke a service on all of them at once. When the service
execution is completed, the NLP service results are inserted
into their corresponding ReqWiki templates and stored in the
user’s place of choice.

Fig. 8 shows the results of the Readability Metrics and
Writing Quality services invoked on a use case description
page in the wiki. The results show the defects of different

types (Grammar and Passive Voice) found by the NLP service
and their exact start and end offsets in the text. Also, where
available, suggestions are provided to the user on how to correct
the defect found by the pipelines.

Fig. 9 is an example of the output from the Document Indexer
service, which creates a book-of-the-book style index of SRS
content. This is especially useful in early phases of RE, e.g.,
to analyze existing domain-specific documents.

VI. EVALUATION

We conducted a case study to evaluate our ReqWiki system
along two dimensions, namely, usability and effectiveness. For
both studies, a total of 22 students from one undergraduate and
one graduate level software requirements engineering course

Fig. 9. NLP-generated ‘back-of-the-book index’



Fig. 10. Sample question from the user study

were teamed up in groups of two to collaboratively create SRS
documents of a hypothetical software project using ReqWiki.

The main question in usability evaluation was to see if
users with fair or no background knowledge about NLP can
leverage ReqWiki’s NLP capabilities. After being introduced to
ReqWiki and its semantic capabilities, the users developed their
first artifacts (Vision document). The participants were then
introduced to NLP services, which were deployed throughout
the study. At the end of the course, we provided students with
a web-based anonymized questionnaire, in which we explicitly
asked them about their background knowledge in the field of
NLP (see Fig. 10) and how easy to use they found the Semantic
Assistants interface in ReqWiki to use, from a Likert-scale of
Very Easy to Very Difficult.

Fig. 11 presents the results gathered from the students’
feedback. As can be observed, 72% of the students with
no previous background knowledge of NLP, 40% with mere
textbook background knowledge, and 50% with professional
experience in the field of NLP found the ReqWiki interface
Very Easy or Easy to use, followed by an average of 40%
to be Neutral. This corroborates our hypothesis that users
do not require background knowledge in NLP to make use
of sophisticated semantic support, provided that it is offered
through an intuitive interface.

For the effectiveness evaluation of ReqWiki, we examined the
impact of the integration of NLP capabilities on the quality of
the developed SRS. Once the data was entered into the wiki and
related pages were cross-linked, students were asked to perform
a manual quality assessment of their SRS documents to correct
defects, such as weak phrases or passive voice. When the
documents were submitted to markers, we counted the number
of defects that were missed by students in their documents.
For the second revision, we deployed the Semantic Assistants
services on their wiki systems and asked them to perform an
additional quality assessment, taking the suggestions of the
analysis services as provided in the wiki interface into account.
Eventually, after the submission of the second revision, the
markers again counted the number of defects remaining in

14%
14%14%

57%

None

60%

40%

Academic

50%

50%

Academic & Professional

Very Difficult

Easy

Difficult

Neutral

Very Easy

Fig. 11. Level of NLP background knowledge versus ReqWiki usability

Fig. 12. Comparison of the average number of defects found in SRS documents
in two revisions, without (left) and with (right) NLP service support

the students’ SRS document. Fig. 12 shows a comparison of
the average number of defects found in students’ assignments,
comparing the manual approach with our NLP services. As can
be seen from Fig. 12, using NLP services for quality assessment
purposes significantly reduced the average number of defects,
thus helping to improve the quality of SRS documents.

A threat to the external validity of our findings is related to
conducting an experiment with students and generalizing it to
actual software engineers working in industry. To mitigate
this effect, we intentionally included graduate students in
addition to the undergraduates, since most of our graduate
students either have industrial experience or are working in
the software industry while studying part-time. In our results,
both groups performed similar with respect to defect reduction,
which indicates that ReqWiki usage benefits software engineers
independent of their background. Another fact posing a threat
to our methodology is the lack of a control group in our
experiment, i.e., enabling the NLP services for only half of the
students and comparing the results to the control group. This
threat was inevitable in our experiment, since all the students
must have had access to the same resources to ensure fairness
in grading of their assignments.

VII. RELATED WORK

Using wikis for RE has been the subject of a number of
studies. Decker et al. [11] are among the first to demonstrate
wiki capabilities as an asynchronous collaborative tool to
support active stakeholder participation in RE, by contrasting
it to plain office suites and dedicated RE tools. They introduce
the Software Organization Platform (SOP) wiki, which is based
on the MediaWiki engine and has an underlying document
structure compliant with Cockburn’s templates [4].

With the introduction of semantic capabilities to wiki engines,
numerous semantic engines have been tailored for RE purposes
to promote shared and unambiguous understanding of require-
ments among stakeholders. Semantic wikis allow annotations
to be added to wiki pages and stored in a knowledge base
or connected to background ontologies, making the inherent
structure of a wiki accessible for machines. The semantic
annotations are then used for formalizing and reasoning [19]
on the requirements. WikiReq [20] is a semantic wiki that
exploits the Semantic MediaWiki engine to manage software



requirements in combination with a goal-oriented language.
A noteworthy feature of WikiReq is its ability to partially
automate the translation of organizational business processes
and system artifacts from the requirements description by
directly transforming semantically annotated requirements to
Eclipse Modeling Framework (EMF) instances.

SoftWiki [21] aims at ‘semantifying’ requirements by devel-
oping an ontology that defines core concepts of requirements
engineering and the way they are interrelated. SoftWiki is
essentially an application that adopts a wiki paradigm by
providing users with wiki-like features, such as rollback
changes or a facility to discuss requirements, rather than an
extension to an existing wiki engine. It allows users to express
requirements, link them to application parts and their usage
context and classify them using a pre-defined topic structure.
Finally, SoftWiki enables semantic interoperability with further
tools by exporting requirements in RDF format according to
its underlying ontology.

The approach most similar to ReqWiki is SmartWiki [22],
which also utilizes SMW templates for managing UC require-
ments. SmartWiki includes some basic support for ‘heuristic
feedback’, like detected passive voice defects. However, it does
not provide for the integration of arbitrary NLP services through
a service-oriented approach like ReqWiki. The SmartWiki
system is also not publicly available.

In contrast to these existing works, we envision with ReqWiki
a system that takes a collaborative approach, where humans
make use of automated NLP assistants, both working on a
shared formal representation in the form of ontologies. In
doing so, we leverage the advantages of ontologies for the
formalization of requirements, while at the same time benefiting
from state-of-the-art NLP techniques to manage unstructured
natural language, both tightly integrated into a wiki system for
intuitive use. Finally, our work is the first that systematically
investigated the potential quality improvement through NLP
support and its acceptance by software engineers.

VIII. CONCLUSION AND FUTURE WORK

Requirements engineering is one of the most important
phases in the software development process, with more than
50% of failed projects attributed to poor RE. Despite these facts,
many projects, in particular in small and mid-size companies,
still rely on office tools without built-in support for RE. In
this research, we showed how modern semantic techniques can
be combined with NLP services in a collaborative web-based
wiki platform to improve RE for all involved stakeholders. We
are currently in the process of refining the user interface with
suggestions obtained through the user study. In ongoing work,
we investigate the connection of ReqWiki with other software
engineering tools, like Eclipse, to improve traceability across
different software artifacts.

ACKNOWLEDGMENT

We thank the Concordia software engineering students that
participated in the evaluation of ReqWiki and Srinivasan Ra-
jivelu for his contributions to the implementation of ReqWiki.

REFERENCES

[1] A. van Lamsweerde, Requirements Engineering. Wiley, 2009.
[2] M. Luisa, F. Mariangela, and N. Pierluigi, “Market research for

requirements analysis using linguistic tools,” Requirements Engineering,
vol. 9, pp. 40–56, 2004, 10.1007/s00766-003-0179-8.

[3] L. Kof, Text Analysis for Requirements Engineering: Application of
Computational Linguistics. Saarbruecken, Germany: VDM Verlag Dr.
Mueller, 2007, ISBN 978-3-8364-4525-2.

[4] A. Cockburn, Writing Effective Use Cases. Addison-Wesley, 2000.
[5] D. Leffingwell and D. Widrig, Managing Software Requirements: A Use

Case Approach, 2nd ed. Pearson Education, 2003.
[6] H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan, N. Aswani,

I. Roberts, G. Gorrell, A. Funk, A. Roberts, D. Damljanovic,
T. Heitz, M. A. Greenwood, H. Saggion, J. Petrak, Y. Li, and
W. Peters, Text Processing with GATE (Version 6). University of
Sheffield, Department of Computer Science, 2011. [Online]. Available:
http://tinyurl.com/gatebook

[7] I. Hussain, O. Ormandjieva, and L. Kosseim, “Automatic Quality
Assessment of SRS Text by Means of a Decision-Tree-Based Text
Classifier,” in 7th International Conference on Quality Software (QSIC
2007). IEEE Computer Society, 2007, pp. 209–218.

[8] V. Gervasi and D. Zowghi, “Reasoning about inconsistencies in natural
language requirements,” ACM Transactions on Software Engineering and
Methodology, vol. 14, no. 3, pp. 277–330, 2005.

[9] P. Sawyer, P. Rayson, and K. Cosh, “Shallow Knowledge as an Aid to
Deep Understanding in Early Phase Requirements Engineering,” IEEE
Trans. on Software Engineering, vol. 31, no. 11, pp. 969–981, 2005.

[10] P. Kruchten, The Rational Unified Process: An Introduction, 3rd ed.
Addison-Wesley, 2003.

[11] B. Decker, E. Ras, J. Rech, P. Jaubert, and M. Rieth, “Wiki-
Based stakeholder participation in requirements engineering,” IEEE
Software, vol. 24, no. 2, pp. 28–35, 2007. [Online]. Available:
http://dx.doi.org/10.1109/MS.2007.60

[12] C. Silveira, J. P. Faria, A. Aguiar, and R. Vidal, “Wiki-Based Require-
ments Documentation of Generic Software Products,” in Proceedings of
the 10th Australian Workshop on Requirements Engineering (AWRE05),
Melbourne, Australia, 2005.

[13] B. Sateli and R. Witte, “Natural Language Processing for MediaWiki: The
Semantic Assistants Approach,” in Proceedings of the 8th International
Symposium on Wikis and Open Collaboration (WikiSym ’12). ACM,
2012. [Online]. Available: http://dx.doi.org/10.1145/2462932.2462976

[14] R. Witte and T. Gitzinger, “Semantic Assistants – User-Centric
Natural Language Processing Services for Desktop Clients,” in 3rd
Asian Semantic Web Conference (ASWC 2008), ser. LNCS, vol. 5367.
Bangkok, Thailand: Springer, 2008, pp. 360–374. [Online]. Available:
http://rene-witte.net/semantic-assistants-aswc08

[15] R. Mudge, “The Design of a Proofreading Software Service,” in Workshop
on Computational Linguistics and Writing: Writing Processes and
Authoring Aids (CL&W 2010), 2010.

[16] W. H. DuBay, The Principles of Readability. Impact Information, 2004.
[17] D. Schreck, V. Dallmeier, and T. Zimmermann, “How documentation

evolves over time,” in IWPSE ’07: Ninth international workshop on
Principles of software evolution. New York, NY, USA: ACM, 2007,
pp. 4–10.

[18] P. A. Laplante, Requirements Engineering for Software and Systems.
Auerbach Publications, 2009.

[19] P. Liang, P. Avgeriou, and V. Clerc, “Requirements reasoning for
distributed requirements analysis using semantic wiki,” in Proceedings
of the 2009 Fourth IEEE International Conference on Global Software
Engineering (ICGSE ’09). IEEE Computer Society, 2009, pp. 388–393.
[Online]. Available: http://dx.doi.org/10.1109/ICGSE.2009.61

[20] L. Abeti, P. Ciancarini, and R. Moretti, “Wiki-based requirements
management for business process reengineering,” in 2009 ICSE Workshop
on Wikis for Software Engineering (WIKIS4SE ’09), 2009, pp. 14–24.
[Online]. Available: http://dx.doi.org/10.1109/WIKIS4SE.2009.5069993

[21] S. Lohmann, P. Heim, S. Auer, S. Dietzold, and T. Riechert, “Semantify-
ing Requirements Engineering – The SoftWiki Approach,” in Proceedings
of the 4th International Conference on Semantic Technologies (I-
SEMANTICS ’08), 2008, pp. 182–185.

[22] E. Knauss, O. Brill, I. Kitzmann, and T. Flohr, “SmartWiki: Support for
High-Quality Requirements Engineering in a Collaborative Setting,” 4th
Workshop on Wikis for Software Engineering at ICSE 2009, Vancouver,
Canada, May 2009.

http://tinyurl.com/gatebook
http://dx.doi.org/10.1109/MS.2007.60
http://dx.doi.org/10.1145/2462932.2462976
http://rene-witte.net/semantic-assistants-aswc08
http://dx.doi.org/10.1109/ICGSE.2009.61
http://dx.doi.org/10.1109/WIKIS4SE.2009.5069993

	Introduction
	Background
	Software Requirements Engineering
	Natural Language Processing

	Design
	Requirements Analysis
	ReqWiki Architecture
	Semantic Model for SRS
	Ontological Formalization of SRS
	Automatic Traceability

	NLP Services for Requirements Engineering

	Implementation
	Wiki Engine and Extensions
	Semantic Markup and Forms
	Templates and Queries
	Semantic Assistants

	Application
	Writing a specification with ReqWiki
	Invoking NLP Services

	Evaluation
	Related Work
	Conclusion and Future Work
	References

