
Semantic Technologies in System Maintenance

Juergen Rilling
Concordia University

Department of Computer
Science and Software

Engineering
Montréal, Québec, Canada
rilling@cse.concordia.ca

René Witte
University of Karlsruhe
Institute for Program
Structures and Data
Organization (IPD)
Karlsruhe, Germany

witte@ipd.uka.de

Dragan Gašević
Athabasca University

School of Computing and
Information Systems
Athabasca, Alberta,

Canada
dragang@athabascau.ca

Jeff Z. Pan
The University of Aberdeen

Department of
Computing Science

Aberdeen,
Scotland, UK

jpan@csd.abdn.ac.uk

Abstract

This paper gives a brief overview of the

International Workshop on Semantic Technologies in
System Maintenance. It describes a number of
semantic technologies (e.g., ontologies, text mining,
and knowledge integration techniques) and identifies
diverse tasks in software maintenance where the use of
semantic technologies can be beneficial, such as
traceability, system comprehension, software artifact
analysis, and information integration.

1. Introduction

While software is a technical category designed to
perform specific tasks by using computer hardware, it
is also a social category that nowadays is used in
almost every aspect of a human’s life. Software is also
a knowledge repository, where knowledge is largely
related to the application domain, and not to software
as an entity. Software engineers and maintainers need
to be able to share and interrelate knowledge stored in
software with the knowledge about all relevant aspects
surrounding and influencing software maintenance
(e.g., domain knowledge, new requirements, policies,
and the contexts, in which people use and interact with
software) in order to bring system maintenance to more
advanced levels. This “System Maintenance 2.0”
requires the use of semantically rich representations of
knowledge coupled with advanced techniques for
knowledge capturing, processing, and integration.

Semantic technologies have more recently become
prominent with research in the Semantic Web and Web
2.0, both of which have seen first applications in
software maintenance. Beyond these, many well-
known knowledge management technologies, such as
text and data mining, are also becoming increasingly
important in the software domain.

In this paper, we discuss some of the most relevant
aspects for the use of semantic technologies in solving
system maintenance tasks. In order to bring together
researchers from different communities to explore this
rather timely research topic, we organized the
International Workshop on Semantic Technologies in
System Maintenance (STSM), collocated with the 16th
IEEE International Conference on Program
Comprehension (ICPC).

2. Semantic Technologies

In this section, we briefly introduce some of the
most relevant aspects that are contributing to this
synergistic space among semantic technologies and
their application in system maintenance.

2.1 Ontologies and Reasoning

The term “ontology” originates from philosophy,
where it denotes the study of existence. In computer
science, the most common definition has been
provided by Gruber [1]: “An ontology is an explicit
specification of a conceptualization.” Ontologies are
typically used as a formal and explicit way of
specifying the concepts and relationships in a domain
of discourse. Ontologies can overcome portability,
flexibility, and information sharing problems
associated with databases. Compared to relational
approaches, which assume complete knowledge
(closed world assumption), ontologies support the
modeling of incomplete knowledge (open world
assumption) and extendibility of the ontological model.

Semantic Web technologies allow for machine
understandable Web resources that can be shared and
processed by both software tools (e.g., search engines)
and humans. Ontologies are an important foundation of
“Semantic Web”-enabled technologies, as they allow
for both sharing knowledge between different agents

The 16th IEEE International Conference on Program Comprehension

978-0-7695-3176-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICPC.2008.38

277

The 16th IEEE International Conference on Program Comprehension

978-0-7695-3176-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICPC.2008.38

277

The 16th IEEE International Conference on Program Comprehension

978-0-7695-3176-2/08 $25.00 © 2008 IEEE
DOI 10.1109/ICPC.2008.38

279

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 1, 2009 at 19:28 from IEEE Xplore. Restrictions apply.

and creating common terminologies for understanding.
They are also an important step towards enrichment of
services and content of the next generation of the
Internet (so-called “Web 3.0”).

The Web Ontology Language (OWL) is a standard
put forward by the W3C (see www.w3.org/TR/owl-
features/). It provides for creating machine-
understandable information to enable the automatic
processing and integration of Web resources. The sub-
language OWL-DL is based on Description Logics
(DLs) and allows for enriching platforms with
reasoning services provided by DL-based knowledge
representation systems. Unlike many logic
programming approaches that cannot guarantee
completeness, DL reasoning services are proven to be
sound, complete, and terminating. Moreover, DL
reasoning is automatic and does not require the
development of logic programs to extract the desired
inferences. DL reasoning is usually performed on
demand and triggered by relevant queries to the
knowledge base.

2.2 Text Mining and NLP

Dealing with the overwhelming amount of
information readily available today is one of the
biggest challenges in computer science. Database and
information system technology together with
information retrieval (IR) enables users to quickly
obtain vast amounts of information in textual form.
However, a serious bottleneck remains by reading,
interpreting, and using the collected information.
While a completely automated understanding of
natural language is still impossible, there now exists a
robust set of language technologies that can support
specific tasks through semantic analyses based on
language technologies, such as natural language
processing (NLP).

 This is addressed by the emerging research field of
Text Mining [2], which developed from the observation
that most knowledge today – more than 80% of the
data stored in databases – is hidden within documents
written in natural languages, and thus cannot be
automatically processed by traditional data mining
systems.

Text mining is a highly interdisciplinary field,
which builds on foundations and technologies from
information systems, natural language processing, and
artificial intelligence. While already in wide use in
domains like news analysis and biomedical knowledge
extraction from research papers, text mining for the
software engineering domain, using documents like
user manuals, requirements specifications or bug
reports, is still in its infancy.

2.3 Models & Metamodels

Model-driven engineering (MDE) is a new software
engineering discipline in which the process heavily
relies on the use of models [3, 4]. A model is a set of
statements about some system under study. Models are
usually specified by using modeling languages (e.g.,
UML), while modeling languages are defined by
metamodels. A metamodel is a model of a modeling
language. That is, a metamodel makes statements about
what can be expressed in the valid models of a certain
modeling language.

The OMG’s Model Driven Architecture (MDA) is
one possible architecture for MDE. The MDA
introduces an approach that distinguishes between
three different types of models, namely, computation-
independent models (CIMs), platform-independent
models (PIMs), and platform-specific models (PSMs).
The important consequence is that, one can deploy the
same system design (PIM) to many different platforms
(PSM). One important characteristics of MDA is its
organization, that is, four layers, including, M1 layer or
model; M2 layer or metamodel; and M3 layer or
metametamodel layer. The relations between different
MDA layers can be considered as instance-of or
conformant-to, which means that a model is an
instance of a metamodel, and a metamodel is an
instance of a metametamodel.

In this context, model transformations represent the
central operation for processing models in MDE.
Model transformations are the process of producing
one model from another model of the same system. In
fact, a model transformation means converting an input
model, which conforms to one metamodel, to another
model, which conforms to another metamodel. In
November 2005, the OMG published the final
specification of the MOF2 Query View Transformation
(QVT) standard. While QVT covers the important
scope of model-to-model transformations, to be able to
fully support round-trip engineering, model-to-text and
text-to-model transformations are the on-going
research challenge in the MDE community.

2.4 Information Integration and Uncertainty

Models for representing uncertain, incomplete, or
inconsistent information have a long tradition in
database and information system research [5]. These
works stem from the observation that data derived
from the “real world” is rarely 100% complete,
accurate, and consistent. By explicitly representing
these imperfections within the underlying data models,
reality can be more closely matched by the “mini
world” models. This allows to capture more
information, as transforming incomplete to precise data
invariably leads to data loss (e.g., when only one of

278278280

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 1, 2009 at 19:28 from IEEE Xplore. Restrictions apply.

two pieces of inconsistent information can be kept),
and therefore should reduce development costs and
improve overall system performance.
On the theoretical side, the various approaches differ in
the knowledge representation formalism employed
(e.g., fuzzy set theory or probabilistic models). A
challenge until today is the question how these models
can be integrated into existing database and software
systems, without requiring extensive changes
throughout the employed technologies. Closely related
is the field of information fusion (also known as
information integration), which emerged from the task
of combining data from heterogeneous sources for data
warehousing and data mining.

2.5 Semantic Desktops and Web 2.0 & 3.0

Recent research on ontologies suggests that
ontologies are not just about symbols representing
knowledge, but also about social interactions of the
ontology users [6]. This notion has considerable
influence on the adoption of Semantic Web
technologies, as the construction, use, and evolution of
ontologies is notably a difficult task. On the other
hand, the Web 2.0 movement focuses on creating new
knowledge through collaboration and social
interactions of individuals on the Web (e.g. wikis,
blogs, etc.). Collaborative tagging systems such as
del.icio.us, Flickr, or BibSonomy provide intuitive
ways for users to annotate Web resources. These
systems use tags to reflect personal assertions about
resources, and leverage these terms for recommending
content to other members in the community, as well as
for building a shared community vocabulary (called a
folksonomy). However, Web 2.0 technologies in
general, and collaborative tagging in particular, suffer
from the problems of ambiguity in their tags’ meanings
and the lack of semantics (e.g., synonymy), the lack of
a coherent categorization scheme, and the needed time
and size of the community in which they will be used
[7]. This can obviously be addressed by ontologies,
clearly explaining why Semantic Web and Web 2.0 are
complementary approaches that create Web 3.0 [8].

Looking from a software maintenance perspective,
Web 3.0 brings many promising opportunities. For
example, the collaborative nature of software
engineering has more recently been addressed by
introducing Wiki systems into the SE process.
Semantic Wiki extensions like Semantic MediaWiki or
IkeWiki add formal structuring and querying extensions
based on RDF/OWL metadata. Moreover, local
desktops of single users also benefit from the use of
Web 3.0 technologies. This leads to the vision of the
Semantic Desktop, where Web 3.0 is used to share
knowledge resources (e.g., emails, blogs, and

discussion forum posts) in a manner contextualized to
the current needs of the users. From the software
maintenance perspective, this opens further
opportunities for a better integration of software
artifacts and knowledge resources by leveraging the
working context of software maintainers.

3. System Maintenance Challenges

The demand for software support of business
processes is constantly increasing, leading to
extensions of existing or the development of new
systems. Either way, software maintainers have to deal
with an ever-increasing code base. While the semantic
technologies introduced above can facilitate their work,
they need to be adapted to the specific application
domain of system maintenance, which is a non-obvious
task due to the complexity of both areas. A necessary
first step is to communicate the specific challenges in
system maintenance to developers of semantic
technologies, which is one of the ideas behind our
STSM workshop.

3.1 Software Comprehension

One of the major challenges for software engineers
while performing maintenance tasks is the need to
comprehend a multitude of often disconnected
artifacts. These artifacts originate typically from the
software development process and are typically
revisited and modified multiple times during a
system’s life cycle.

As a result, maintainers often face the challenge to
identify and comprehend different representations and
interrelationships that exist among the software
artifacts and knowledge resources involved in a
particular maintenance task. From a maintainer’s
perspective, exploring and linking these artifacts and
knowledge resources becomes a key challenge. What is
needed are techniques and representations that allow
maintainers to emerge, share and collaborative in the
available knowledge and resource space.

Traditionally, the focus was on supporting
maintainers with an analysis of the static and dynamic
aspects of software systems, mainly derived from
source code or analyzing run-time behavior. However,
other artifacts, such as documentation, contain relevant
semantic information that is normally difficult or even
impossible to extract only from source code.

Thus, an increasingly important aspect of software
comprehension becomes the extraction of semantic
knowledge from artifacts other than the source code.

279279281

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 1, 2009 at 19:28 from IEEE Xplore. Restrictions apply.

3.2 Traceability Recovery

While performing software maintenance, software
engineers spend a large amount of effort on
synthesizing and integrating information from various
sources to establish links among these artifacts.
Existing research in software traceability has mainly
focused in the past on reducing the costs associated
with this manual effort by developing automatic
assistance in establishing traceability links among
software artifacts during the software development
process. Given the complexity of software, the number
of systems already developed, and the money spent on
keeping these systems maintained, (re-)establishing
traceability among existing software artifacts becomes
an important maintenance aspect. Among the existing
traceability challenges are: (1) Establish links between
incomplete, inconsistent and often not well defined
artifacts and (2) the need to evolve existing links, to
ensure quality and trustworthiness among them.

Research on re-establishing traceability between
source code and documents has mainly focused on
connecting documents and source code using
Information Retrieval (IR) techniques. However, these
approaches intrinsically ignore structural and
semantical information that can be found in both
documents and source code, limiting therefore both
their precision and applicability. As a result, re-
establishing, maintaining, and validating traceability
links between existing software artifacts remains a
major challenge.

3.3 Distributed Processes

Software is used to implement solutions that are
expected to change periodically to adapt to ever
changing environments. The efficient management and
execution of these changes is critical to software
quality and software evolution. Managing and
supporting software maintenance creates ongoing
challenges, due to the variations and interrelationships
that exist among software artifacts, tool resources,
maintenance processes, and tasks. Maintainers are
often left with no or only limited guidance on how to
complete a particular task within a given maintenance
and organizational context, using a set of available
resources (e.g., tools, artifacts). Existing tool and
technique integration approaches face the same
ongoing challenge due to a lack of integration
standards that would allow for sharing services and
knowledge among them. Only little work exists in
examining how different tools and techniques work
together. The situation is further complicated by the
ever increasing globalization of both software
development and maintenance processes, resulting in

an additional need to also support collaborative
software maintenance and knowledge sharing
processes.

4. Conclusions

While our survey discusses some of the most relevant
research areas, our list of technologies has definitely
not covered all possible approaches that contribute to
the core set of semantic technologies. Furthermore, the
list of system maintenance challenges is provided just
to stimulate community discussions and to start further
exploration and leveraging of semantic technologies in
system maintenance. As a first step toward establishing
a research community in this area, the first
international STSM workshop is focusing on the
application of semantic technologies to system
maintenance, including (but not limited to) the
following topics:
• Traceability Link Recovery
• Reverse Engineering
• System Comprehension
• Processes and Process Modeling
• Outsourcing and Off-Shoring
• Software Development and Maintenance Life-

cycle
• Software Artifact analysis and integration (e.g.,

requirements, source code, documents, emails, bug
reports)

• Integration of semantic technologies in software
maintenance tools

Results from the workshop will be published online
under http://megaplanet.org/stsm2008/.

5. References

[1] Gruber, T.R.: “A Translation Approach to Portable

Ontology Specifications”, Knowledge Acquisition,
5(2):199-220, 1993.

[2] Feldman, R. & Sanger, J. 2006. The Text Mining
Handbook: Advanced Approaches in Analyzing
Unstructured Data, Cambridge University Press.

[3] Bézivin, J. “On the unification power of models,” Soft.
and Sys. Modeling, vol. 4, no. 2, pp. 171-188, 2005.

[4] Favre, J., M., "Towards a Basic Theory to Model Model
Driven Engineering", In Proc. of the UML2004 Int.
Workshop on Software Model Engineering, 2004.

[5] Bouchon-Meunier, B., Yager, R.R., and Zadeh, L.A.,
1999. Information, Uncertainty and Fusion, Springer.

[6] Mika, P. (2005). “Ontologies Are Us: A Unified Model
of Social Networks and Semantics,” In Proceedings of
the 4th Int’l Semantic Web Conf., pp. 522-536.

[7] Mikroyannidis, A., “Toward a Social Semantic Web,”
Computer, vol. 40, no. 11, 2007, pp. 113-115.

[8] Lassila, O. and Hendler, J. 2007. Embracing "Web 3.0".
IEEE Internet Computing 11, 3 (May. 2007), 90-93

280280282

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 1, 2009 at 19:28 from IEEE Xplore. Restrictions apply.

